Rev 169 | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line | 
|---|---|---|---|
| 96 | pmbaty | 1 | /* | 
| 2 |   Stockfish, a UCI chess playing engine derived from Glaurung 2.1 | ||
| 3 |   Copyright (C) 2004-2008 Tord Romstad (Glaurung author) | ||
| 4 |   Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad | ||
| 185 | pmbaty | 5 |   Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad | 
| 96 | pmbaty | 6 | |
| 7 |   Stockfish is free software: you can redistribute it and/or modify | ||
| 8 |   it under the terms of the GNU General Public License as published by | ||
| 9 |   the Free Software Foundation, either version 3 of the License, or | ||
| 10 |   (at your option) any later version. | ||
| 11 | |||
| 12 |   Stockfish is distributed in the hope that it will be useful, | ||
| 13 |   but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 14 |   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | ||
| 15 |   GNU General Public License for more details. | ||
| 16 | |||
| 17 |   You should have received a copy of the GNU General Public License | ||
| 18 |   along with this program.  If not, see <http://www.gnu.org/licenses/>. | ||
| 19 | */ | ||
| 20 | |||
| 21 | #include <algorithm> | ||
| 22 | #include <cassert> | ||
| 154 | pmbaty | 23 | #include <cstddef> // For offsetof() | 
| 24 | #include <cstring> // For std::memset, std::memcmp | ||
| 96 | pmbaty | 25 | #include <iomanip> | 
| 26 | #include <sstream> | ||
| 27 | |||
| 154 | pmbaty | 28 | #include "bitboard.h" | 
| 96 | pmbaty | 29 | #include "misc.h" | 
| 30 | #include "movegen.h" | ||
| 31 | #include "position.h" | ||
| 32 | #include "thread.h" | ||
| 33 | #include "tt.h" | ||
| 34 | #include "uci.h" | ||
| 169 | pmbaty | 35 | #include "syzygy/tbprobe.h" | 
| 96 | pmbaty | 36 | |
| 37 | using std::string; | ||
| 38 | |||
| 39 | namespace Zobrist { | ||
| 40 | |||
| 154 | pmbaty | 41 | Key psq[PIECE_NB][SQUARE_NB]; | 
| 96 | pmbaty | 42 | Key enpassant[FILE_NB]; | 
| 43 | Key castling[CASTLING_RIGHT_NB]; | ||
| 169 | pmbaty | 44 |   Key side, noPawns; | 
| 96 | pmbaty | 45 | } | 
| 46 | |||
| 47 | namespace { | ||
| 48 | |||
| 49 | const string PieceToChar(" PNBRQK pnbrqk"); | ||
| 50 | |||
| 185 | pmbaty | 51 | constexpr Piece Pieces[] = { W_PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING, | 
| 52 | B_PAWN, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING }; | ||
| 169 | pmbaty | 53 | |
| 54 | // min_attacker() is a helper function used by see_ge() to locate the least | ||
| 96 | pmbaty | 55 | // valuable attacker for the side to move, remove the attacker we just found | 
| 56 | // from the bitboards and scan for new X-ray attacks behind it. | ||
| 57 | |||
| 58 | template<int Pt> | ||
| 185 | pmbaty | 59 | PieceType min_attacker(const Bitboard* byTypeBB, Square to, Bitboard stmAttackers, | 
| 96 | pmbaty | 60 | Bitboard& occupied, Bitboard& attackers) { | 
| 61 | |||
| 185 | pmbaty | 62 | Bitboard b = stmAttackers & byTypeBB[Pt]; | 
| 96 | pmbaty | 63 | if (!b) | 
| 185 | pmbaty | 64 | return min_attacker<Pt + 1>(byTypeBB, to, stmAttackers, occupied, attackers); | 
| 96 | pmbaty | 65 | |
| 185 | pmbaty | 66 | occupied ^= lsb(b); // Remove the attacker from occupied | 
| 96 | pmbaty | 67 | |
| 185 | pmbaty | 68 |   // Add any X-ray attack behind the just removed piece. For instance with | 
| 69 |   // rooks in a8 and a7 attacking a1, after removing a7 we add rook in a8. | ||
| 70 |   // Note that new added attackers can be of any color. | ||
| 96 | pmbaty | 71 | if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN) | 
| 185 | pmbaty | 72 | attackers |= attacks_bb<BISHOP>(to, occupied) & (byTypeBB[BISHOP] | byTypeBB[QUEEN]); | 
| 96 | pmbaty | 73 | |
| 74 | if (Pt == ROOK || Pt == QUEEN) | ||
| 185 | pmbaty | 75 | attackers |= attacks_bb<ROOK>(to, occupied) & (byTypeBB[ROOK] | byTypeBB[QUEEN]); | 
| 96 | pmbaty | 76 | |
| 185 | pmbaty | 77 |   // X-ray may add already processed pieces because byTypeBB[] is constant: in | 
| 78 |   // the rook example, now attackers contains _again_ rook in a7, so remove it. | ||
| 79 | attackers &= occupied; | ||
| 96 | pmbaty | 80 | return (PieceType)Pt; | 
| 81 | } | ||
| 82 | |||
| 83 | template<> | ||
| 84 | PieceType min_attacker<KING>(const Bitboard*, Square, Bitboard, Bitboard&, Bitboard&) { | ||
| 85 | return KING; // No need to update bitboards: it is the last cycle | ||
| 86 | } | ||
| 87 | |||
| 88 | } // namespace | ||
| 89 | |||
| 90 | |||
| 91 | /// operator<<(Position) returns an ASCII representation of the position | ||
| 92 | |||
| 93 | std::ostream& operator<<(std::ostream& os, const Position& pos) { | ||
| 94 | |||
| 95 | os << "\n +---+---+---+---+---+---+---+---+\n"; | ||
| 96 | |||
| 97 | for (Rank r = RANK_8; r >= RANK_1; --r) | ||
| 98 |   { | ||
| 99 | for (File f = FILE_A; f <= FILE_H; ++f) | ||
| 100 | os << " | " << PieceToChar[pos.piece_on(make_square(f, r))]; | ||
| 101 | |||
| 102 | os << " |\n +---+---+---+---+---+---+---+---+\n"; | ||
| 103 |   } | ||
| 104 | |||
| 105 | os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase | ||
| 169 | pmbaty | 106 | << std::setfill('0') << std::setw(16) << pos.key() | 
| 107 | << std::setfill(' ') << std::dec << "\nCheckers: "; | ||
| 96 | pmbaty | 108 | |
| 109 | for (Bitboard b = pos.checkers(); b; ) | ||
| 110 | os << UCI::square(pop_lsb(&b)) << " "; | ||
| 111 | |||
| 169 | pmbaty | 112 | if ( int(Tablebases::MaxCardinality) >= popcount(pos.pieces()) | 
| 113 | && !pos.can_castle(ANY_CASTLING)) | ||
| 114 |   { | ||
| 115 |       StateInfo st; | ||
| 116 |       Position p; | ||
| 117 | p.set(pos.fen(), pos.is_chess960(), &st, pos.this_thread()); | ||
| 118 | Tablebases::ProbeState s1, s2; | ||
| 119 | Tablebases::WDLScore wdl = Tablebases::probe_wdl(p, &s1); | ||
| 120 | int dtz = Tablebases::probe_dtz(p, &s2); | ||
| 121 | os << "\nTablebases WDL: " << std::setw(4) << wdl << " (" << s1 << ")" | ||
| 122 | << "\nTablebases DTZ: " << std::setw(4) << dtz << " (" << s2 << ")"; | ||
| 123 |   } | ||
| 124 | |||
| 96 | pmbaty | 125 | return os; | 
| 126 | } | ||
| 127 | |||
| 128 | |||
| 185 | pmbaty | 129 | // Marcel van Kervinck's cuckoo algorithm for fast detection of "upcoming repetition" | 
| 130 | // situations. Description of the algorithm in the following paper: | ||
| 131 | // https://marcelk.net/2013-04-06/paper/upcoming-rep-v2.pdf | ||
| 132 | |||
| 133 | // First and second hash functions for indexing the cuckoo tables | ||
| 134 | inline int H1(Key h) { return h & 0x1fff; } | ||
| 135 | inline int H2(Key h) { return (h >> 16) & 0x1fff; } | ||
| 136 | |||
| 137 | // Cuckoo tables with Zobrist hashes of valid reversible moves, and the moves themselves | ||
| 138 | Key cuckoo[8192]; | ||
| 139 | Move cuckooMove[8192]; | ||
| 140 | |||
| 141 | |||
| 96 | pmbaty | 142 | /// Position::init() initializes at startup the various arrays used to compute | 
| 143 | /// hash keys. | ||
| 144 | |||
| 145 | void Position::init() { | ||
| 146 | |||
| 147 | PRNG rng(1070372); | ||
| 148 | |||
| 154 | pmbaty | 149 | for (Piece pc : Pieces) | 
| 150 | for (Square s = SQ_A1; s <= SQ_H8; ++s) | ||
| 151 | Zobrist::psq[pc][s] = rng.rand<Key>(); | ||
| 96 | pmbaty | 152 | |
| 153 | for (File f = FILE_A; f <= FILE_H; ++f) | ||
| 154 | Zobrist::enpassant[f] = rng.rand<Key>(); | ||
| 155 | |||
| 156 | for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr) | ||
| 157 |   { | ||
| 158 | Zobrist::castling[cr] = 0; | ||
| 159 | Bitboard b = cr; | ||
| 160 | while (b) | ||
| 161 |       { | ||
| 162 | Key k = Zobrist::castling[1ULL << pop_lsb(&b)]; | ||
| 163 | Zobrist::castling[cr] ^= k ? k : rng.rand<Key>(); | ||
| 164 |       } | ||
| 165 |   } | ||
| 166 | |||
| 167 | Zobrist::side = rng.rand<Key>(); | ||
| 169 | pmbaty | 168 | Zobrist::noPawns = rng.rand<Key>(); | 
| 185 | pmbaty | 169 | |
| 170 |   // Prepare the cuckoo tables | ||
| 171 | std::memset(cuckoo, 0, sizeof(cuckoo)); | ||
| 172 | std::memset(cuckooMove, 0, sizeof(cuckooMove)); | ||
| 173 | int count = 0; | ||
| 174 | for (Piece pc : Pieces) | ||
| 175 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) | ||
| 176 | for (Square s2 = Square(s1 + 1); s2 <= SQ_H8; ++s2) | ||
| 177 | if (PseudoAttacks[type_of(pc)][s1] & s2) | ||
| 178 |               { | ||
| 179 | Move move = make_move(s1, s2); | ||
| 180 | Key key = Zobrist::psq[pc][s1] ^ Zobrist::psq[pc][s2] ^ Zobrist::side; | ||
| 181 | int i = H1(key); | ||
| 182 | while (true) | ||
| 183 |                   { | ||
| 184 | std::swap(cuckoo[i], key); | ||
| 185 | std::swap(cuckooMove[i], move); | ||
| 186 | if (move == 0) // Arrived at empty slot ? | ||
| 187 | break; | ||
| 188 | i = (i == H1(key)) ? H2(key) : H1(key); // Push victim to alternative slot | ||
| 189 |                   } | ||
| 190 | count++; | ||
| 191 |              } | ||
| 192 | assert(count == 3668); | ||
| 96 | pmbaty | 193 | } | 
| 194 | |||
| 195 | |||
| 196 | /// Position::set() initializes the position object with the given FEN string. | ||
| 197 | /// This function is not very robust - make sure that input FENs are correct, | ||
| 198 | /// this is assumed to be the responsibility of the GUI. | ||
| 199 | |||
| 154 | pmbaty | 200 | Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Thread* th) { | 
| 96 | pmbaty | 201 | /* | 
| 202 |    A FEN string defines a particular position using only the ASCII character set. | ||
| 203 | |||
| 204 |    A FEN string contains six fields separated by a space. The fields are: | ||
| 205 | |||
| 206 |    1) Piece placement (from white's perspective). Each rank is described, starting | ||
| 207 |       with rank 8 and ending with rank 1. Within each rank, the contents of each | ||
| 208 |       square are described from file A through file H. Following the Standard | ||
| 209 |       Algebraic Notation (SAN), each piece is identified by a single letter taken | ||
| 210 |       from the standard English names. White pieces are designated using upper-case | ||
| 211 |       letters ("PNBRQK") whilst Black uses lowercase ("pnbrqk"). Blank squares are | ||
| 212 |       noted using digits 1 through 8 (the number of blank squares), and "/" | ||
| 213 |       separates ranks. | ||
| 214 | |||
| 215 |    2) Active color. "w" means white moves next, "b" means black. | ||
| 216 | |||
| 217 |    3) Castling availability. If neither side can castle, this is "-". Otherwise, | ||
| 218 |       this has one or more letters: "K" (White can castle kingside), "Q" (White | ||
| 219 |       can castle queenside), "k" (Black can castle kingside), and/or "q" (Black | ||
| 220 |       can castle queenside). | ||
| 221 | |||
| 222 |    4) En passant target square (in algebraic notation). If there's no en passant | ||
| 223 |       target square, this is "-". If a pawn has just made a 2-square move, this | ||
| 169 | pmbaty | 224 |       is the position "behind" the pawn. This is recorded only if there is a pawn | 
| 225 |       in position to make an en passant capture, and if there really is a pawn | ||
| 226 |       that might have advanced two squares. | ||
| 96 | pmbaty | 227 | |
| 228 |    5) Halfmove clock. This is the number of halfmoves since the last pawn advance | ||
| 229 |       or capture. This is used to determine if a draw can be claimed under the | ||
| 230 |       fifty-move rule. | ||
| 231 | |||
| 232 |    6) Fullmove number. The number of the full move. It starts at 1, and is | ||
| 233 |       incremented after Black's move. | ||
| 234 | */ | ||
| 235 | |||
| 236 | unsigned char col, row, token; | ||
| 237 | size_t idx; | ||
| 238 | Square sq = SQ_A8; | ||
| 239 | std::istringstream ss(fenStr); | ||
| 240 | |||
| 154 | pmbaty | 241 | std::memset(this, 0, sizeof(Position)); | 
| 242 | std::memset(si, 0, sizeof(StateInfo)); | ||
| 243 | std::fill_n(&pieceList[0][0], sizeof(pieceList) / sizeof(Square), SQ_NONE); | ||
| 244 | st = si; | ||
| 245 | |||
| 96 | pmbaty | 246 | ss >> std::noskipws; | 
| 247 | |||
| 248 |   // 1. Piece placement | ||
| 249 | while ((ss >> token) && !isspace(token)) | ||
| 250 |   { | ||
| 251 | if (isdigit(token)) | ||
| 169 | pmbaty | 252 | sq += (token - '0') * EAST; // Advance the given number of files | 
| 96 | pmbaty | 253 | |
| 254 | else if (token == '/') | ||
| 169 | pmbaty | 255 | sq += 2 * SOUTH; | 
| 96 | pmbaty | 256 | |
| 257 | else if ((idx = PieceToChar.find(token)) != string::npos) | ||
| 258 |       { | ||
| 154 | pmbaty | 259 | put_piece(Piece(idx), sq); | 
| 96 | pmbaty | 260 | ++sq; | 
| 261 |       } | ||
| 262 |   } | ||
| 263 | |||
| 264 |   // 2. Active color | ||
| 265 | ss >> token; | ||
| 266 | sideToMove = (token == 'w' ? WHITE : BLACK); | ||
| 267 | ss >> token; | ||
| 268 | |||
| 269 |   // 3. Castling availability. Compatible with 3 standards: Normal FEN standard, | ||
| 270 |   // Shredder-FEN that uses the letters of the columns on which the rooks began | ||
| 271 |   // the game instead of KQkq and also X-FEN standard that, in case of Chess960, | ||
| 272 |   // if an inner rook is associated with the castling right, the castling tag is | ||
| 273 |   // replaced by the file letter of the involved rook, as for the Shredder-FEN. | ||
| 274 | while ((ss >> token) && !isspace(token)) | ||
| 275 |   { | ||
| 276 |       Square rsq; | ||
| 277 | Color c = islower(token) ? BLACK : WHITE; | ||
| 278 | Piece rook = make_piece(c, ROOK); | ||
| 279 | |||
| 280 | token = char(toupper(token)); | ||
| 281 | |||
| 282 | if (token == 'K') | ||
| 283 | for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {} | ||
| 284 | |||
| 285 | else if (token == 'Q') | ||
| 286 | for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {} | ||
| 287 | |||
| 288 | else if (token >= 'A' && token <= 'H') | ||
| 289 | rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1)); | ||
| 290 | |||
| 291 |       else | ||
| 292 | continue; | ||
| 293 | |||
| 294 | set_castling_right(c, rsq); | ||
| 295 |   } | ||
| 296 | |||
| 297 |   // 4. En passant square. Ignore if no pawn capture is possible | ||
| 298 | if ( ((ss >> col) && (col >= 'a' && col <= 'h')) | ||
| 299 | && ((ss >> row) && (row == '3' || row == '6'))) | ||
| 300 |   { | ||
| 301 | st->epSquare = make_square(File(col - 'a'), Rank(row - '1')); | ||
| 302 | |||
| 169 | pmbaty | 303 | if ( !(attackers_to(st->epSquare) & pieces(sideToMove, PAWN)) | 
| 304 | || !(pieces(~sideToMove, PAWN) & (st->epSquare + pawn_push(~sideToMove)))) | ||
| 96 | pmbaty | 305 | st->epSquare = SQ_NONE; | 
| 306 |   } | ||
| 154 | pmbaty | 307 |   else | 
| 308 | st->epSquare = SQ_NONE; | ||
| 96 | pmbaty | 309 | |
| 310 |   // 5-6. Halfmove clock and fullmove number | ||
| 311 | ss >> std::skipws >> st->rule50 >> gamePly; | ||
| 312 | |||
| 169 | pmbaty | 313 |   // Convert from fullmove starting from 1 to gamePly starting from 0, | 
| 96 | pmbaty | 314 |   // handle also common incorrect FEN with fullmove = 0. | 
| 315 | gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK); | ||
| 316 | |||
| 317 | chess960 = isChess960; | ||
| 318 | thisThread = th; | ||
| 319 | set_state(st); | ||
| 320 | |||
| 321 | assert(pos_is_ok()); | ||
| 154 | pmbaty | 322 | |
| 323 | return *this; | ||
| 96 | pmbaty | 324 | } | 
| 325 | |||
| 326 | |||
| 327 | /// Position::set_castling_right() is a helper function used to set castling | ||
| 328 | /// rights given the corresponding color and the rook starting square. | ||
| 329 | |||
| 330 | void Position::set_castling_right(Color c, Square rfrom) { | ||
| 331 | |||
| 332 | Square kfrom = square<KING>(c); | ||
| 333 | CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE; | ||
| 334 | CastlingRight cr = (c | cs); | ||
| 335 | |||
| 336 | st->castlingRights |= cr; | ||
| 337 | castlingRightsMask[kfrom] |= cr; | ||
| 338 | castlingRightsMask[rfrom] |= cr; | ||
| 339 | castlingRookSquare[cr] = rfrom; | ||
| 340 | |||
| 341 | Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1); | ||
| 342 | Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1); | ||
| 343 | |||
| 344 | for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s) | ||
| 345 | if (s != kfrom && s != rfrom) | ||
| 346 | castlingPath[cr] |= s; | ||
| 347 | |||
| 348 | for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s) | ||
| 349 | if (s != kfrom && s != rfrom) | ||
| 350 | castlingPath[cr] |= s; | ||
| 351 | } | ||
| 352 | |||
| 353 | |||
| 154 | pmbaty | 354 | /// Position::set_check_info() sets king attacks to detect if a move gives check | 
| 355 | |||
| 356 | void Position::set_check_info(StateInfo* si) const { | ||
| 357 | |||
| 185 | pmbaty | 358 | si->blockersForKing[WHITE] = slider_blockers(pieces(BLACK), square<KING>(WHITE), si->pinners[BLACK]); | 
| 359 | si->blockersForKing[BLACK] = slider_blockers(pieces(WHITE), square<KING>(BLACK), si->pinners[WHITE]); | ||
| 154 | pmbaty | 360 | |
| 361 | Square ksq = square<KING>(~sideToMove); | ||
| 362 | |||
| 363 | si->checkSquares[PAWN] = attacks_from<PAWN>(ksq, ~sideToMove); | ||
| 364 | si->checkSquares[KNIGHT] = attacks_from<KNIGHT>(ksq); | ||
| 365 | si->checkSquares[BISHOP] = attacks_from<BISHOP>(ksq); | ||
| 366 | si->checkSquares[ROOK] = attacks_from<ROOK>(ksq); | ||
| 367 | si->checkSquares[QUEEN] = si->checkSquares[BISHOP] | si->checkSquares[ROOK]; | ||
| 368 | si->checkSquares[KING] = 0; | ||
| 369 | } | ||
| 370 | |||
| 371 | |||
| 96 | pmbaty | 372 | /// Position::set_state() computes the hash keys of the position, and other | 
| 373 | /// data that once computed is updated incrementally as moves are made. | ||
| 374 | /// The function is only used when a new position is set up, and to verify | ||
| 375 | /// the correctness of the StateInfo data when running in debug mode. | ||
| 376 | |||
| 377 | void Position::set_state(StateInfo* si) const { | ||
| 378 | |||
| 169 | pmbaty | 379 | si->key = si->materialKey = 0; | 
| 380 | si->pawnKey = Zobrist::noPawns; | ||
| 96 | pmbaty | 381 | si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO; | 
| 382 | si->checkersBB = attackers_to(square<KING>(sideToMove)) & pieces(~sideToMove); | ||
| 383 | |||
| 154 | pmbaty | 384 | set_check_info(si); | 
| 385 | |||
| 96 | pmbaty | 386 | for (Bitboard b = pieces(); b; ) | 
| 387 |   { | ||
| 388 | Square s = pop_lsb(&b); | ||
| 389 | Piece pc = piece_on(s); | ||
| 154 | pmbaty | 390 | si->key ^= Zobrist::psq[pc][s]; | 
| 96 | pmbaty | 391 |   } | 
| 392 | |||
| 393 | if (si->epSquare != SQ_NONE) | ||
| 394 | si->key ^= Zobrist::enpassant[file_of(si->epSquare)]; | ||
| 395 | |||
| 396 | if (sideToMove == BLACK) | ||
| 397 | si->key ^= Zobrist::side; | ||
| 398 | |||
| 399 | si->key ^= Zobrist::castling[si->castlingRights]; | ||
| 400 | |||
| 401 | for (Bitboard b = pieces(PAWN); b; ) | ||
| 402 |   { | ||
| 403 | Square s = pop_lsb(&b); | ||
| 154 | pmbaty | 404 | si->pawnKey ^= Zobrist::psq[piece_on(s)][s]; | 
| 96 | pmbaty | 405 |   } | 
| 406 | |||
| 154 | pmbaty | 407 | for (Piece pc : Pieces) | 
| 408 |   { | ||
| 409 | if (type_of(pc) != PAWN && type_of(pc) != KING) | ||
| 410 | si->nonPawnMaterial[color_of(pc)] += pieceCount[pc] * PieceValue[MG][pc]; | ||
| 96 | pmbaty | 411 | |
| 154 | pmbaty | 412 | for (int cnt = 0; cnt < pieceCount[pc]; ++cnt) | 
| 413 | si->materialKey ^= Zobrist::psq[pc][cnt]; | ||
| 414 |   } | ||
| 96 | pmbaty | 415 | } | 
| 416 | |||
| 417 | |||
| 169 | pmbaty | 418 | /// Position::set() is an overload to initialize the position object with | 
| 419 | /// the given endgame code string like "KBPKN". It is mainly a helper to | ||
| 420 | /// get the material key out of an endgame code. | ||
| 421 | |||
| 422 | Position& Position::set(const string& code, Color c, StateInfo* si) { | ||
| 423 | |||
| 424 | assert(code.length() > 0 && code.length() < 8); | ||
| 425 | assert(code[0] == 'K'); | ||
| 426 | |||
| 427 | string sides[] = { code.substr(code.find('K', 1)), // Weak | ||
| 428 | code.substr(0, code.find('K', 1)) }; // Strong | ||
| 429 | |||
| 430 | std::transform(sides[c].begin(), sides[c].end(), sides[c].begin(), tolower); | ||
| 431 | |||
| 432 | string fenStr = "8/" + sides[0] + char(8 - sides[0].length() + '0') + "/8/8/8/8/" | ||
| 433 | + sides[1] + char(8 - sides[1].length() + '0') + "/8 w - - 0 10"; | ||
| 434 | |||
| 435 | return set(fenStr, false, si, nullptr); | ||
| 436 | } | ||
| 437 | |||
| 438 | |||
| 96 | pmbaty | 439 | /// Position::fen() returns a FEN representation of the position. In case of | 
| 440 | /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. | ||
| 441 | |||
| 442 | const string Position::fen() const { | ||
| 443 | |||
| 444 | int emptyCnt; | ||
| 445 | std::ostringstream ss; | ||
| 446 | |||
| 447 | for (Rank r = RANK_8; r >= RANK_1; --r) | ||
| 448 |   { | ||
| 449 | for (File f = FILE_A; f <= FILE_H; ++f) | ||
| 450 |       { | ||
| 451 | for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f) | ||
| 452 | ++emptyCnt; | ||
| 453 | |||
| 454 | if (emptyCnt) | ||
| 455 | ss << emptyCnt; | ||
| 456 | |||
| 457 | if (f <= FILE_H) | ||
| 458 | ss << PieceToChar[piece_on(make_square(f, r))]; | ||
| 459 |       } | ||
| 460 | |||
| 461 | if (r > RANK_1) | ||
| 462 | ss << '/'; | ||
| 463 |   } | ||
| 464 | |||
| 465 | ss << (sideToMove == WHITE ? " w " : " b "); | ||
| 466 | |||
| 467 | if (can_castle(WHITE_OO)) | ||
| 468 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | KING_SIDE))) : 'K'); | ||
| 469 | |||
| 470 | if (can_castle(WHITE_OOO)) | ||
| 471 | ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | QUEEN_SIDE))) : 'Q'); | ||
| 472 | |||
| 473 | if (can_castle(BLACK_OO)) | ||
| 474 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | KING_SIDE))) : 'k'); | ||
| 475 | |||
| 476 | if (can_castle(BLACK_OOO)) | ||
| 477 | ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | QUEEN_SIDE))) : 'q'); | ||
| 478 | |||
| 479 | if (!can_castle(WHITE) && !can_castle(BLACK)) | ||
| 480 | ss << '-'; | ||
| 481 | |||
| 482 | ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ") | ||
| 483 | << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2; | ||
| 484 | |||
| 485 | return ss.str(); | ||
| 486 | } | ||
| 487 | |||
| 488 | |||
| 154 | pmbaty | 489 | /// Position::slider_blockers() returns a bitboard of all the pieces (both colors) | 
| 490 | /// that are blocking attacks on the square 's' from 'sliders'. A piece blocks a | ||
| 491 | /// slider if removing that piece from the board would result in a position where | ||
| 492 | /// square 's' is attacked. For example, a king-attack blocking piece can be either | ||
| 493 | /// a pinned or a discovered check piece, according if its color is the opposite | ||
| 494 | /// or the same of the color of the slider. | ||
| 96 | pmbaty | 495 | |
| 154 | pmbaty | 496 | Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners) const { | 
| 96 | pmbaty | 497 | |
| 185 | pmbaty | 498 | Bitboard blockers = 0; | 
| 154 | pmbaty | 499 | pinners = 0; | 
| 96 | pmbaty | 500 | |
| 154 | pmbaty | 501 |   // Snipers are sliders that attack 's' when a piece is removed | 
| 169 | pmbaty | 502 | Bitboard snipers = ( (PseudoAttacks[ ROOK][s] & pieces(QUEEN, ROOK)) | 
| 154 | pmbaty | 503 | | (PseudoAttacks[BISHOP][s] & pieces(QUEEN, BISHOP))) & sliders; | 
| 96 | pmbaty | 504 | |
| 154 | pmbaty | 505 | while (snipers) | 
| 96 | pmbaty | 506 |   { | 
| 154 | pmbaty | 507 | Square sniperSq = pop_lsb(&snipers); | 
| 508 | Bitboard b = between_bb(s, sniperSq) & pieces(); | ||
| 96 | pmbaty | 509 | |
| 185 | pmbaty | 510 | if (b && !more_than_one(b)) | 
| 154 | pmbaty | 511 |     { | 
| 185 | pmbaty | 512 | blockers |= b; | 
| 154 | pmbaty | 513 | if (b & pieces(color_of(piece_on(s)))) | 
| 514 | pinners |= sniperSq; | ||
| 515 |     } | ||
| 96 | pmbaty | 516 |   } | 
| 185 | pmbaty | 517 | return blockers; | 
| 96 | pmbaty | 518 | } | 
| 519 | |||
| 520 | |||
| 521 | /// Position::attackers_to() computes a bitboard of all pieces which attack a | ||
| 522 | /// given square. Slider attacks use the occupied bitboard to indicate occupancy. | ||
| 523 | |||
| 524 | Bitboard Position::attackers_to(Square s, Bitboard occupied) const { | ||
| 525 | |||
| 526 | return (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN)) | ||
| 527 | | (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN)) | ||
| 528 | | (attacks_from<KNIGHT>(s) & pieces(KNIGHT)) | ||
| 169 | pmbaty | 529 | | (attacks_bb< ROOK>(s, occupied) & pieces( ROOK, QUEEN)) | 
| 96 | pmbaty | 530 | | (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN)) | 
| 531 | | (attacks_from<KING>(s) & pieces(KING)); | ||
| 532 | } | ||
| 533 | |||
| 534 | |||
| 535 | /// Position::legal() tests whether a pseudo-legal move is legal | ||
| 536 | |||
| 154 | pmbaty | 537 | bool Position::legal(Move m) const { | 
| 96 | pmbaty | 538 | |
| 539 | assert(is_ok(m)); | ||
| 540 | |||
| 541 | Color us = sideToMove; | ||
| 542 | Square from = from_sq(m); | ||
| 543 | |||
| 544 | assert(color_of(moved_piece(m)) == us); | ||
| 545 | assert(piece_on(square<KING>(us)) == make_piece(us, KING)); | ||
| 546 | |||
| 547 |   // En passant captures are a tricky special case. Because they are rather | ||
| 548 |   // uncommon, we do it simply by testing whether the king is attacked after | ||
| 549 |   // the move is made. | ||
| 550 | if (type_of(m) == ENPASSANT) | ||
| 551 |   { | ||
| 552 | Square ksq = square<KING>(us); | ||
| 553 | Square to = to_sq(m); | ||
| 554 | Square capsq = to - pawn_push(us); | ||
| 555 | Bitboard occupied = (pieces() ^ from ^ capsq) | to; | ||
| 556 | |||
| 557 | assert(to == ep_square()); | ||
| 558 | assert(moved_piece(m) == make_piece(us, PAWN)); | ||
| 559 | assert(piece_on(capsq) == make_piece(~us, PAWN)); | ||
| 560 | assert(piece_on(to) == NO_PIECE); | ||
| 561 | |||
| 562 | return !(attacks_bb< ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK)) | ||
| 563 | && !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP)); | ||
| 564 |   } | ||
| 565 | |||
| 566 |   // If the moving piece is a king, check whether the destination | ||
| 567 |   // square is attacked by the opponent. Castling moves are checked | ||
| 568 |   // for legality during move generation. | ||
| 569 | if (type_of(piece_on(from)) == KING) | ||
| 570 | return type_of(m) == CASTLING || !(attackers_to(to_sq(m)) & pieces(~us)); | ||
| 571 | |||
| 572 |   // A non-king move is legal if and only if it is not pinned or it | ||
| 573 |   // is moving along the ray towards or away from the king. | ||
| 185 | pmbaty | 574 | return !(blockers_for_king(us) & from) | 
| 96 | pmbaty | 575 | || aligned(from, to_sq(m), square<KING>(us)); | 
| 576 | } | ||
| 577 | |||
| 578 | |||
| 579 | /// Position::pseudo_legal() takes a random move and tests whether the move is | ||
| 580 | /// pseudo legal. It is used to validate moves from TT that can be corrupted | ||
| 581 | /// due to SMP concurrent access or hash position key aliasing. | ||
| 582 | |||
| 583 | bool Position::pseudo_legal(const Move m) const { | ||
| 584 | |||
| 585 | Color us = sideToMove; | ||
| 586 | Square from = from_sq(m); | ||
| 587 | Square to = to_sq(m); | ||
| 588 | Piece pc = moved_piece(m); | ||
| 589 | |||
| 590 |   // Use a slower but simpler function for uncommon cases | ||
| 591 | if (type_of(m) != NORMAL) | ||
| 592 | return MoveList<LEGAL>(*this).contains(m); | ||
| 593 | |||
| 594 |   // Is not a promotion, so promotion piece must be empty | ||
| 595 | if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE) | ||
| 596 | return false; | ||
| 597 | |||
| 598 |   // If the 'from' square is not occupied by a piece belonging to the side to | ||
| 599 |   // move, the move is obviously not legal. | ||
| 600 | if (pc == NO_PIECE || color_of(pc) != us) | ||
| 601 | return false; | ||
| 602 | |||
| 603 |   // The destination square cannot be occupied by a friendly piece | ||
| 604 | if (pieces(us) & to) | ||
| 605 | return false; | ||
| 606 | |||
| 607 |   // Handle the special case of a pawn move | ||
| 608 | if (type_of(pc) == PAWN) | ||
| 609 |   { | ||
| 610 |       // We have already handled promotion moves, so destination | ||
| 611 |       // cannot be on the 8th/1st rank. | ||
| 612 | if (rank_of(to) == relative_rank(us, RANK_8)) | ||
| 613 | return false; | ||
| 614 | |||
| 615 | if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture | ||
| 616 | && !((from + pawn_push(us) == to) && empty(to)) // Not a single push | ||
| 617 | && !( (from + 2 * pawn_push(us) == to) // Not a double push | ||
| 618 | && (rank_of(from) == relative_rank(us, RANK_2)) | ||
| 619 | && empty(to) | ||
| 620 | && empty(to - pawn_push(us)))) | ||
| 621 | return false; | ||
| 622 |   } | ||
| 169 | pmbaty | 623 | else if (!(attacks_from(type_of(pc), from) & to)) | 
| 96 | pmbaty | 624 | return false; | 
| 625 | |||
| 626 |   // Evasions generator already takes care to avoid some kind of illegal moves | ||
| 627 |   // and legal() relies on this. We therefore have to take care that the same | ||
| 628 |   // kind of moves are filtered out here. | ||
| 629 | if (checkers()) | ||
| 630 |   { | ||
| 631 | if (type_of(pc) != KING) | ||
| 632 |       { | ||
| 633 |           // Double check? In this case a king move is required | ||
| 634 | if (more_than_one(checkers())) | ||
| 635 | return false; | ||
| 636 | |||
| 637 |           // Our move must be a blocking evasion or a capture of the checking piece | ||
| 638 | if (!((between_bb(lsb(checkers()), square<KING>(us)) | checkers()) & to)) | ||
| 639 | return false; | ||
| 640 |       } | ||
| 641 |       // In case of king moves under check we have to remove king so as to catch | ||
| 642 |       // invalid moves like b1a1 when opposite queen is on c1. | ||
| 643 | else if (attackers_to(to, pieces() ^ from) & pieces(~us)) | ||
| 644 | return false; | ||
| 645 |   } | ||
| 646 | |||
| 647 | return true; | ||
| 648 | } | ||
| 649 | |||
| 650 | |||
| 651 | /// Position::gives_check() tests whether a pseudo-legal move gives a check | ||
| 652 | |||
| 154 | pmbaty | 653 | bool Position::gives_check(Move m) const { | 
| 96 | pmbaty | 654 | |
| 655 | assert(is_ok(m)); | ||
| 656 | assert(color_of(moved_piece(m)) == sideToMove); | ||
| 657 | |||
| 658 | Square from = from_sq(m); | ||
| 659 | Square to = to_sq(m); | ||
| 660 | |||
| 661 |   // Is there a direct check? | ||
| 154 | pmbaty | 662 | if (st->checkSquares[type_of(piece_on(from))] & to) | 
| 96 | pmbaty | 663 | return true; | 
| 664 | |||
| 665 |   // Is there a discovered check? | ||
| 185 | pmbaty | 666 | if ( (st->blockersForKing[~sideToMove] & from) | 
| 154 | pmbaty | 667 | && !aligned(from, to, square<KING>(~sideToMove))) | 
| 96 | pmbaty | 668 | return true; | 
| 669 | |||
| 670 | switch (type_of(m)) | ||
| 671 |   { | ||
| 672 | case NORMAL: | ||
| 673 | return false; | ||
| 674 | |||
| 675 | case PROMOTION: | ||
| 169 | pmbaty | 676 | return attacks_bb(promotion_type(m), to, pieces() ^ from) & square<KING>(~sideToMove); | 
| 96 | pmbaty | 677 | |
| 678 |   // En passant capture with check? We have already handled the case | ||
| 679 |   // of direct checks and ordinary discovered check, so the only case we | ||
| 680 |   // need to handle is the unusual case of a discovered check through | ||
| 681 |   // the captured pawn. | ||
| 682 | case ENPASSANT: | ||
| 683 |   { | ||
| 684 | Square capsq = make_square(file_of(to), rank_of(from)); | ||
| 685 | Bitboard b = (pieces() ^ from ^ capsq) | to; | ||
| 686 | |||
| 154 | pmbaty | 687 | return (attacks_bb< ROOK>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, ROOK)) | 
| 688 | | (attacks_bb<BISHOP>(square<KING>(~sideToMove), b) & pieces(sideToMove, QUEEN, BISHOP)); | ||
| 96 | pmbaty | 689 |   } | 
| 690 | case CASTLING: | ||
| 691 |   { | ||
| 692 | Square kfrom = from; | ||
| 693 | Square rfrom = to; // Castling is encoded as 'King captures the rook' | ||
| 694 | Square kto = relative_square(sideToMove, rfrom > kfrom ? SQ_G1 : SQ_C1); | ||
| 695 | Square rto = relative_square(sideToMove, rfrom > kfrom ? SQ_F1 : SQ_D1); | ||
| 696 | |||
| 154 | pmbaty | 697 | return (PseudoAttacks[ROOK][rto] & square<KING>(~sideToMove)) | 
| 698 | && (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & square<KING>(~sideToMove)); | ||
| 96 | pmbaty | 699 |   } | 
| 700 | default: | ||
| 701 | assert(false); | ||
| 702 | return false; | ||
| 703 |   } | ||
| 704 | } | ||
| 705 | |||
| 706 | |||
| 707 | /// Position::do_move() makes a move, and saves all information necessary | ||
| 708 | /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal | ||
| 709 | /// moves should be filtered out before this function is called. | ||
| 710 | |||
| 711 | void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) { | ||
| 712 | |||
| 713 | assert(is_ok(m)); | ||
| 714 | assert(&newSt != st); | ||
| 715 | |||
| 169 | pmbaty | 716 | thisThread->nodes.fetch_add(1, std::memory_order_relaxed); | 
| 96 | pmbaty | 717 | Key k = st->key ^ Zobrist::side; | 
| 718 | |||
| 719 |   // Copy some fields of the old state to our new StateInfo object except the | ||
| 720 |   // ones which are going to be recalculated from scratch anyway and then switch | ||
| 721 |   // our state pointer to point to the new (ready to be updated) state. | ||
| 722 | std::memcpy(&newSt, st, offsetof(StateInfo, key)); | ||
| 723 | newSt.previous = st; | ||
| 724 | st = &newSt; | ||
| 725 | |||
| 726 |   // Increment ply counters. In particular, rule50 will be reset to zero later on | ||
| 727 |   // in case of a capture or a pawn move. | ||
| 728 | ++gamePly; | ||
| 729 | ++st->rule50; | ||
| 730 | ++st->pliesFromNull; | ||
| 731 | |||
| 732 | Color us = sideToMove; | ||
| 733 | Color them = ~us; | ||
| 734 | Square from = from_sq(m); | ||
| 735 | Square to = to_sq(m); | ||
| 154 | pmbaty | 736 | Piece pc = piece_on(from); | 
| 737 | Piece captured = type_of(m) == ENPASSANT ? make_piece(them, PAWN) : piece_on(to); | ||
| 96 | pmbaty | 738 | |
| 154 | pmbaty | 739 | assert(color_of(pc) == us); | 
| 740 | assert(captured == NO_PIECE || color_of(captured) == (type_of(m) != CASTLING ? them : us)); | ||
| 741 | assert(type_of(captured) != KING); | ||
| 96 | pmbaty | 742 | |
| 743 | if (type_of(m) == CASTLING) | ||
| 744 |   { | ||
| 154 | pmbaty | 745 | assert(pc == make_piece(us, KING)); | 
| 746 | assert(captured == make_piece(us, ROOK)); | ||
| 96 | pmbaty | 747 | |
| 748 |       Square rfrom, rto; | ||
| 749 | do_castling<true>(us, from, to, rfrom, rto); | ||
| 750 | |||
| 154 | pmbaty | 751 | k ^= Zobrist::psq[captured][rfrom] ^ Zobrist::psq[captured][rto]; | 
| 752 | captured = NO_PIECE; | ||
| 96 | pmbaty | 753 |   } | 
| 754 | |||
| 755 | if (captured) | ||
| 756 |   { | ||
| 757 | Square capsq = to; | ||
| 758 | |||
| 759 |       // If the captured piece is a pawn, update pawn hash key, otherwise | ||
| 760 |       // update non-pawn material. | ||
| 154 | pmbaty | 761 | if (type_of(captured) == PAWN) | 
| 96 | pmbaty | 762 |       { | 
| 763 | if (type_of(m) == ENPASSANT) | ||
| 764 |           { | ||
| 765 | capsq -= pawn_push(us); | ||
| 766 | |||
| 154 | pmbaty | 767 | assert(pc == make_piece(us, PAWN)); | 
| 96 | pmbaty | 768 | assert(to == st->epSquare); | 
| 769 | assert(relative_rank(us, to) == RANK_6); | ||
| 770 | assert(piece_on(to) == NO_PIECE); | ||
| 771 | assert(piece_on(capsq) == make_piece(them, PAWN)); | ||
| 772 | |||
| 773 | board[capsq] = NO_PIECE; // Not done by remove_piece() | ||
| 774 |           } | ||
| 775 | |||
| 154 | pmbaty | 776 | st->pawnKey ^= Zobrist::psq[captured][capsq]; | 
| 96 | pmbaty | 777 |       } | 
| 778 |       else | ||
| 779 | st->nonPawnMaterial[them] -= PieceValue[MG][captured]; | ||
| 780 | |||
| 781 |       // Update board and piece lists | ||
| 154 | pmbaty | 782 | remove_piece(captured, capsq); | 
| 96 | pmbaty | 783 | |
| 784 |       // Update material hash key and prefetch access to materialTable | ||
| 154 | pmbaty | 785 | k ^= Zobrist::psq[captured][capsq]; | 
| 786 | st->materialKey ^= Zobrist::psq[captured][pieceCount[captured]]; | ||
| 96 | pmbaty | 787 | prefetch(thisThread->materialTable[st->materialKey]); | 
| 788 | |||
| 789 |       // Reset rule 50 counter | ||
| 790 | st->rule50 = 0; | ||
| 791 |   } | ||
| 792 | |||
| 793 |   // Update hash key | ||
| 154 | pmbaty | 794 | k ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; | 
| 96 | pmbaty | 795 | |
| 796 |   // Reset en passant square | ||
| 797 | if (st->epSquare != SQ_NONE) | ||
| 798 |   { | ||
| 799 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; | ||
| 800 | st->epSquare = SQ_NONE; | ||
| 801 |   } | ||
| 802 | |||
| 803 |   // Update castling rights if needed | ||
| 804 | if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to])) | ||
| 805 |   { | ||
| 806 | int cr = castlingRightsMask[from] | castlingRightsMask[to]; | ||
| 807 | k ^= Zobrist::castling[st->castlingRights & cr]; | ||
| 808 | st->castlingRights &= ~cr; | ||
| 809 |   } | ||
| 810 | |||
| 811 |   // Move the piece. The tricky Chess960 castling is handled earlier | ||
| 812 | if (type_of(m) != CASTLING) | ||
| 154 | pmbaty | 813 | move_piece(pc, from, to); | 
| 96 | pmbaty | 814 | |
| 815 |   // If the moving piece is a pawn do some special extra work | ||
| 154 | pmbaty | 816 | if (type_of(pc) == PAWN) | 
| 96 | pmbaty | 817 |   { | 
| 818 |       // Set en-passant square if the moved pawn can be captured | ||
| 819 | if ( (int(to) ^ int(from)) == 16 | ||
| 820 | && (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN))) | ||
| 821 |       { | ||
| 169 | pmbaty | 822 | st->epSquare = to - pawn_push(us); | 
| 96 | pmbaty | 823 | k ^= Zobrist::enpassant[file_of(st->epSquare)]; | 
| 824 |       } | ||
| 825 | |||
| 826 | else if (type_of(m) == PROMOTION) | ||
| 827 |       { | ||
| 154 | pmbaty | 828 | Piece promotion = make_piece(us, promotion_type(m)); | 
| 96 | pmbaty | 829 | |
| 830 | assert(relative_rank(us, to) == RANK_8); | ||
| 154 | pmbaty | 831 | assert(type_of(promotion) >= KNIGHT && type_of(promotion) <= QUEEN); | 
| 96 | pmbaty | 832 | |
| 154 | pmbaty | 833 | remove_piece(pc, to); | 
| 834 | put_piece(promotion, to); | ||
| 96 | pmbaty | 835 | |
| 836 |           // Update hash keys | ||
| 154 | pmbaty | 837 | k ^= Zobrist::psq[pc][to] ^ Zobrist::psq[promotion][to]; | 
| 838 | st->pawnKey ^= Zobrist::psq[pc][to]; | ||
| 839 | st->materialKey ^= Zobrist::psq[promotion][pieceCount[promotion]-1] | ||
| 840 | ^ Zobrist::psq[pc][pieceCount[pc]]; | ||
| 96 | pmbaty | 841 | |
| 842 |           // Update material | ||
| 843 | st->nonPawnMaterial[us] += PieceValue[MG][promotion]; | ||
| 844 |       } | ||
| 845 | |||
| 846 |       // Update pawn hash key and prefetch access to pawnsTable | ||
| 154 | pmbaty | 847 | st->pawnKey ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to]; | 
| 169 | pmbaty | 848 | prefetch2(thisThread->pawnsTable[st->pawnKey]); | 
| 96 | pmbaty | 849 | |
| 850 |       // Reset rule 50 draw counter | ||
| 851 | st->rule50 = 0; | ||
| 852 |   } | ||
| 853 | |||
| 854 |   // Set capture piece | ||
| 154 | pmbaty | 855 | st->capturedPiece = captured; | 
| 96 | pmbaty | 856 | |
| 857 |   // Update the key with the final value | ||
| 858 | st->key = k; | ||
| 859 | |||
| 860 |   // Calculate checkers bitboard (if move gives check) | ||
| 861 | st->checkersBB = givesCheck ? attackers_to(square<KING>(them)) & pieces(us) : 0; | ||
| 862 | |||
| 863 | sideToMove = ~sideToMove; | ||
| 864 | |||
| 154 | pmbaty | 865 |   // Update king attacks used for fast check detection | 
| 866 | set_check_info(st); | ||
| 867 | |||
| 96 | pmbaty | 868 | assert(pos_is_ok()); | 
| 869 | } | ||
| 870 | |||
| 871 | |||
| 872 | /// Position::undo_move() unmakes a move. When it returns, the position should | ||
| 873 | /// be restored to exactly the same state as before the move was made. | ||
| 874 | |||
| 875 | void Position::undo_move(Move m) { | ||
| 876 | |||
| 877 | assert(is_ok(m)); | ||
| 878 | |||
| 879 | sideToMove = ~sideToMove; | ||
| 880 | |||
| 881 | Color us = sideToMove; | ||
| 882 | Square from = from_sq(m); | ||
| 883 | Square to = to_sq(m); | ||
| 154 | pmbaty | 884 | Piece pc = piece_on(to); | 
| 96 | pmbaty | 885 | |
| 886 | assert(empty(from) || type_of(m) == CASTLING); | ||
| 154 | pmbaty | 887 | assert(type_of(st->capturedPiece) != KING); | 
| 96 | pmbaty | 888 | |
| 889 | if (type_of(m) == PROMOTION) | ||
| 890 |   { | ||
| 891 | assert(relative_rank(us, to) == RANK_8); | ||
| 154 | pmbaty | 892 | assert(type_of(pc) == promotion_type(m)); | 
| 893 | assert(type_of(pc) >= KNIGHT && type_of(pc) <= QUEEN); | ||
| 96 | pmbaty | 894 | |
| 154 | pmbaty | 895 | remove_piece(pc, to); | 
| 896 | pc = make_piece(us, PAWN); | ||
| 897 | put_piece(pc, to); | ||
| 96 | pmbaty | 898 |   } | 
| 899 | |||
| 900 | if (type_of(m) == CASTLING) | ||
| 901 |   { | ||
| 902 |       Square rfrom, rto; | ||
| 903 | do_castling<false>(us, from, to, rfrom, rto); | ||
| 904 |   } | ||
| 905 |   else | ||
| 906 |   { | ||
| 154 | pmbaty | 907 | move_piece(pc, to, from); // Put the piece back at the source square | 
| 96 | pmbaty | 908 | |
| 154 | pmbaty | 909 | if (st->capturedPiece) | 
| 96 | pmbaty | 910 |       { | 
| 911 | Square capsq = to; | ||
| 912 | |||
| 913 | if (type_of(m) == ENPASSANT) | ||
| 914 |           { | ||
| 915 | capsq -= pawn_push(us); | ||
| 916 | |||
| 154 | pmbaty | 917 | assert(type_of(pc) == PAWN); | 
| 96 | pmbaty | 918 | assert(to == st->previous->epSquare); | 
| 919 | assert(relative_rank(us, to) == RANK_6); | ||
| 920 | assert(piece_on(capsq) == NO_PIECE); | ||
| 154 | pmbaty | 921 | assert(st->capturedPiece == make_piece(~us, PAWN)); | 
| 96 | pmbaty | 922 |           } | 
| 923 | |||
| 154 | pmbaty | 924 | put_piece(st->capturedPiece, capsq); // Restore the captured piece | 
| 96 | pmbaty | 925 |       } | 
| 926 |   } | ||
| 927 | |||
| 928 |   // Finally point our state pointer back to the previous state | ||
| 929 | st = st->previous; | ||
| 930 | --gamePly; | ||
| 931 | |||
| 932 | assert(pos_is_ok()); | ||
| 933 | } | ||
| 934 | |||
| 935 | |||
| 936 | /// Position::do_castling() is a helper used to do/undo a castling move. This | ||
| 154 | pmbaty | 937 | /// is a bit tricky in Chess960 where from/to squares can overlap. | 
| 96 | pmbaty | 938 | template<bool Do> | 
| 939 | void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) { | ||
| 940 | |||
| 941 | bool kingSide = to > from; | ||
| 942 | rfrom = to; // Castling is encoded as "king captures friendly rook" | ||
| 943 | rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1); | ||
| 944 | to = relative_square(us, kingSide ? SQ_G1 : SQ_C1); | ||
| 945 | |||
| 946 |   // Remove both pieces first since squares could overlap in Chess960 | ||
| 154 | pmbaty | 947 | remove_piece(make_piece(us, KING), Do ? from : to); | 
| 948 | remove_piece(make_piece(us, ROOK), Do ? rfrom : rto); | ||
| 96 | pmbaty | 949 | board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us | 
| 154 | pmbaty | 950 | put_piece(make_piece(us, KING), Do ? to : from); | 
| 951 | put_piece(make_piece(us, ROOK), Do ? rto : rfrom); | ||
| 96 | pmbaty | 952 | } | 
| 953 | |||
| 954 | |||
| 955 | /// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips | ||
| 956 | /// the side to move without executing any move on the board. | ||
| 957 | |||
| 958 | void Position::do_null_move(StateInfo& newSt) { | ||
| 959 | |||
| 960 | assert(!checkers()); | ||
| 961 | assert(&newSt != st); | ||
| 962 | |||
| 963 | std::memcpy(&newSt, st, sizeof(StateInfo)); | ||
| 964 | newSt.previous = st; | ||
| 965 | st = &newSt; | ||
| 966 | |||
| 967 | if (st->epSquare != SQ_NONE) | ||
| 968 |   { | ||
| 969 | st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; | ||
| 970 | st->epSquare = SQ_NONE; | ||
| 971 |   } | ||
| 972 | |||
| 973 | st->key ^= Zobrist::side; | ||
| 974 | prefetch(TT.first_entry(st->key)); | ||
| 975 | |||
| 976 | ++st->rule50; | ||
| 977 | st->pliesFromNull = 0; | ||
| 978 | |||
| 979 | sideToMove = ~sideToMove; | ||
| 980 | |||
| 154 | pmbaty | 981 | set_check_info(st); | 
| 982 | |||
| 96 | pmbaty | 983 | assert(pos_is_ok()); | 
| 984 | } | ||
| 985 | |||
| 986 | void Position::undo_null_move() { | ||
| 987 | |||
| 988 | assert(!checkers()); | ||
| 989 | |||
| 990 | st = st->previous; | ||
| 991 | sideToMove = ~sideToMove; | ||
| 992 | } | ||
| 993 | |||
| 994 | |||
| 995 | /// Position::key_after() computes the new hash key after the given move. Needed | ||
| 996 | /// for speculative prefetch. It doesn't recognize special moves like castling, | ||
| 997 | /// en-passant and promotions. | ||
| 998 | |||
| 999 | Key Position::key_after(Move m) const { | ||
| 1000 | |||
| 1001 | Square from = from_sq(m); | ||
| 1002 | Square to = to_sq(m); | ||
| 154 | pmbaty | 1003 | Piece pc = piece_on(from); | 
| 1004 | Piece captured = piece_on(to); | ||
| 96 | pmbaty | 1005 | Key k = st->key ^ Zobrist::side; | 
| 1006 | |||
| 1007 | if (captured) | ||
| 154 | pmbaty | 1008 | k ^= Zobrist::psq[captured][to]; | 
| 96 | pmbaty | 1009 | |
| 154 | pmbaty | 1010 | return k ^ Zobrist::psq[pc][to] ^ Zobrist::psq[pc][from]; | 
| 96 | pmbaty | 1011 | } | 
| 1012 | |||
| 1013 | |||
| 154 | pmbaty | 1014 | /// Position::see_ge (Static Exchange Evaluation Greater or Equal) tests if the | 
| 169 | pmbaty | 1015 | /// SEE value of move is greater or equal to the given threshold. We'll use an | 
| 154 | pmbaty | 1016 | /// algorithm similar to alpha-beta pruning with a null window. | 
| 96 | pmbaty | 1017 | |
| 169 | pmbaty | 1018 | bool Position::see_ge(Move m, Value threshold) const { | 
| 96 | pmbaty | 1019 | |
| 1020 | assert(is_ok(m)); | ||
| 1021 | |||
| 169 | pmbaty | 1022 |   // Only deal with normal moves, assume others pass a simple see | 
| 1023 | if (type_of(m) != NORMAL) | ||
| 1024 | return VALUE_ZERO >= threshold; | ||
| 96 | pmbaty | 1025 | |
| 185 | pmbaty | 1026 |   Bitboard stmAttackers; | 
| 154 | pmbaty | 1027 | Square from = from_sq(m), to = to_sq(m); | 
| 1028 | PieceType nextVictim = type_of(piece_on(from)); | ||
| 185 | pmbaty | 1029 | Color us = color_of(piece_on(from)); | 
| 1030 | Color stm = ~us; // First consider opponent's move | ||
| 1031 | Value balance; // Values of the pieces taken by us minus opponent's ones | ||
| 96 | pmbaty | 1032 | |
| 169 | pmbaty | 1033 |   // The opponent may be able to recapture so this is the best result | 
| 1034 |   // we can hope for. | ||
| 1035 | balance = PieceValue[MG][piece_on(to)] - threshold; | ||
| 96 | pmbaty | 1036 | |
| 169 | pmbaty | 1037 | if (balance < VALUE_ZERO) | 
| 154 | pmbaty | 1038 | return false; | 
| 96 | pmbaty | 1039 | |
| 169 | pmbaty | 1040 |   // Now assume the worst possible result: that the opponent can | 
| 1041 |   // capture our piece for free. | ||
| 154 | pmbaty | 1042 | balance -= PieceValue[MG][nextVictim]; | 
| 96 | pmbaty | 1043 | |
| 185 | pmbaty | 1044 |   // If it is enough (like in PxQ) then return immediately. Note that | 
| 1045 |   // in case nextVictim == KING we always return here, this is ok | ||
| 1046 |   // if the given move is legal. | ||
| 1047 | if (balance >= VALUE_ZERO) | ||
| 154 | pmbaty | 1048 | return true; | 
| 96 | pmbaty | 1049 | |
| 185 | pmbaty | 1050 |   // Find all attackers to the destination square, with the moving piece | 
| 1051 |   // removed, but possibly an X-ray attacker added behind it. | ||
| 1052 | Bitboard occupied = pieces() ^ from ^ to; | ||
| 154 | pmbaty | 1053 | Bitboard attackers = attackers_to(to, occupied) & occupied; | 
| 1054 | |||
| 1055 | while (true) | ||
| 96 | pmbaty | 1056 |   { | 
| 154 | pmbaty | 1057 | stmAttackers = attackers & pieces(stm); | 
| 96 | pmbaty | 1058 | |
| 185 | pmbaty | 1059 |       // Don't allow pinned pieces to attack (except the king) as long as | 
| 1060 |       // all pinners are on their original square. | ||
| 1061 | if (!(st->pinners[~stm] & ~occupied)) | ||
| 154 | pmbaty | 1062 | stmAttackers &= ~st->blockersForKing[stm]; | 
| 96 | pmbaty | 1063 | |
| 185 | pmbaty | 1064 |       // If stm has no more attackers then give up: stm loses | 
| 154 | pmbaty | 1065 | if (!stmAttackers) | 
| 169 | pmbaty | 1066 | break; | 
| 96 | pmbaty | 1067 | |
| 185 | pmbaty | 1068 |       // Locate and remove the next least valuable attacker, and add to | 
| 1069 |       // the bitboard 'attackers' the possibly X-ray attackers behind it. | ||
| 154 | pmbaty | 1070 | nextVictim = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers); | 
| 96 | pmbaty | 1071 | |
| 185 | pmbaty | 1072 | stm = ~stm; // Switch side to move | 
| 1073 | |||
| 1074 |       // Negamax the balance with alpha = balance, beta = balance+1 and | ||
| 1075 |       // add nextVictim's value. | ||
| 1076 |       // | ||
| 1077 |       //      (balance, balance+1) -> (-balance-1, -balance) | ||
| 1078 |       // | ||
| 1079 | assert(balance < VALUE_ZERO); | ||
| 1080 | |||
| 1081 | balance = -balance - 1 - PieceValue[MG][nextVictim]; | ||
| 1082 | |||
| 1083 |       // If balance is still non-negative after giving away nextVictim then we | ||
| 1084 |       // win. The only thing to be careful about it is that we should revert | ||
| 1085 |       // stm if we captured with the king when the opponent still has attackers. | ||
| 1086 | if (balance >= VALUE_ZERO) | ||
| 169 | pmbaty | 1087 |       { | 
| 185 | pmbaty | 1088 | if (nextVictim == KING && (attackers & pieces(stm))) | 
| 1089 | stm = ~stm; | ||
| 169 | pmbaty | 1090 | break; | 
| 1091 |       } | ||
| 185 | pmbaty | 1092 | assert(nextVictim != KING); | 
| 154 | pmbaty | 1093 |   } | 
| 185 | pmbaty | 1094 | return us != stm; // We break the above loop when stm loses | 
| 96 | pmbaty | 1095 | } | 
| 1096 | |||
| 1097 | |||
| 1098 | /// Position::is_draw() tests whether the position is drawn by 50-move rule | ||
| 1099 | /// or by repetition. It does not detect stalemates. | ||
| 1100 | |||
| 169 | pmbaty | 1101 | bool Position::is_draw(int ply) const { | 
| 96 | pmbaty | 1102 | |
| 1103 | if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size())) | ||
| 1104 | return true; | ||
| 1105 | |||
| 169 | pmbaty | 1106 | int end = std::min(st->rule50, st->pliesFromNull); | 
| 1107 | |||
| 1108 | if (end < 4) | ||
| 1109 | return false; | ||
| 1110 | |||
| 1111 | StateInfo* stp = st->previous->previous; | ||
| 1112 | int cnt = 0; | ||
| 1113 | |||
| 1114 | for (int i = 4; i <= end; i += 2) | ||
| 96 | pmbaty | 1115 |   { | 
| 1116 | stp = stp->previous->previous; | ||
| 1117 | |||
| 169 | pmbaty | 1118 |       // Return a draw score if a position repeats once earlier but strictly | 
| 1119 |       // after the root, or repeats twice before or at the root. | ||
| 1120 | if ( stp->key == st->key | ||
| 1121 | && ++cnt + (ply > i) == 2) | ||
| 1122 | return true; | ||
| 96 | pmbaty | 1123 |   } | 
| 1124 | |||
| 1125 | return false; | ||
| 1126 | } | ||
| 1127 | |||
| 1128 | |||
| 185 | pmbaty | 1129 | // Position::has_repeated() tests whether there has been at least one repetition | 
| 1130 | // of positions since the last capture or pawn move. | ||
| 1131 | |||
| 1132 | bool Position::has_repeated() const { | ||
| 1133 | |||
| 1134 | StateInfo* stc = st; | ||
| 1135 | while (true) | ||
| 1136 |     { | ||
| 1137 | int i = 4, end = std::min(stc->rule50, stc->pliesFromNull); | ||
| 1138 | |||
| 1139 | if (end < i) | ||
| 1140 | return false; | ||
| 1141 | |||
| 1142 | StateInfo* stp = stc->previous->previous; | ||
| 1143 | |||
| 1144 | do { | ||
| 1145 | stp = stp->previous->previous; | ||
| 1146 | |||
| 1147 | if (stp->key == stc->key) | ||
| 1148 | return true; | ||
| 1149 | |||
| 1150 | i += 2; | ||
| 1151 | } while (i <= end); | ||
| 1152 | |||
| 1153 | stc = stc->previous; | ||
| 1154 |     } | ||
| 1155 | } | ||
| 1156 | |||
| 1157 | |||
| 1158 | /// Position::has_game_cycle() tests if the position has a move which draws by repetition, | ||
| 1159 | /// or an earlier position has a move that directly reaches the current position. | ||
| 1160 | |||
| 1161 | bool Position::has_game_cycle(int ply) const { | ||
| 1162 | |||
| 1163 | int j; | ||
| 1164 | |||
| 1165 | int end = std::min(st->rule50, st->pliesFromNull); | ||
| 1166 | |||
| 1167 | if (end < 3) | ||
| 1168 | return false; | ||
| 1169 | |||
| 1170 | Key originalKey = st->key; | ||
| 1171 | StateInfo* stp = st->previous; | ||
| 1172 | |||
| 1173 | for (int i = 3; i <= end; i += 2) | ||
| 1174 |   { | ||
| 1175 | stp = stp->previous->previous; | ||
| 1176 | |||
| 1177 | Key moveKey = originalKey ^ stp->key; | ||
| 1178 | if ( (j = H1(moveKey), cuckoo[j] == moveKey) | ||
| 1179 | || (j = H2(moveKey), cuckoo[j] == moveKey)) | ||
| 1180 |       { | ||
| 1181 | Move move = cuckooMove[j]; | ||
| 1182 | Square s1 = from_sq(move); | ||
| 1183 | Square s2 = to_sq(move); | ||
| 1184 | |||
| 1185 | if (!(between_bb(s1, s2) & pieces())) | ||
| 1186 |           { | ||
| 1187 |               // In the cuckoo table, both moves Rc1c5 and Rc5c1 are stored in the same | ||
| 1188 |               // location. We select the legal one by reversing the move variable if necessary. | ||
| 1189 | if (empty(s1)) | ||
| 1190 | move = make_move(s2, s1); | ||
| 1191 | |||
| 1192 | if (ply > i) | ||
| 1193 | return true; | ||
| 1194 | |||
| 1195 |               // For repetitions before or at the root, require one more | ||
| 1196 | StateInfo* next_stp = stp; | ||
| 1197 | for (int k = i + 2; k <= end; k += 2) | ||
| 1198 |               { | ||
| 1199 | next_stp = next_stp->previous->previous; | ||
| 1200 | if (next_stp->key == stp->key) | ||
| 1201 | return true; | ||
| 1202 |               } | ||
| 1203 |           } | ||
| 1204 |       } | ||
| 1205 |   } | ||
| 1206 | return false; | ||
| 1207 | } | ||
| 1208 | |||
| 1209 | |||
| 96 | pmbaty | 1210 | /// Position::flip() flips position with the white and black sides reversed. This | 
| 1211 | /// is only useful for debugging e.g. for finding evaluation symmetry bugs. | ||
| 1212 | |||
| 1213 | void Position::flip() { | ||
| 1214 | |||
| 1215 |   string f, token; | ||
| 1216 | std::stringstream ss(fen()); | ||
| 1217 | |||
| 1218 | for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement | ||
| 1219 |   { | ||
| 1220 | std::getline(ss, token, r > RANK_1 ? '/' : ' '); | ||
| 1221 | f.insert(0, token + (f.empty() ? " " : "/")); | ||
| 1222 |   } | ||
| 1223 | |||
| 1224 | ss >> token; // Active color | ||
| 1225 | f += (token == "w" ? "B " : "W "); // Will be lowercased later | ||
| 1226 | |||
| 1227 | ss >> token; // Castling availability | ||
| 1228 | f += token + " "; | ||
| 1229 | |||
| 1230 | std::transform(f.begin(), f.end(), f.begin(), | ||
| 1231 | [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); }); | ||
| 1232 | |||
| 1233 | ss >> token; // En passant square | ||
| 1234 | f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3")); | ||
| 1235 | |||
| 1236 | std::getline(ss, token); // Half and full moves | ||
| 1237 | f += token; | ||
| 1238 | |||
| 154 | pmbaty | 1239 | set(f, is_chess960(), st, this_thread()); | 
| 96 | pmbaty | 1240 | |
| 1241 | assert(pos_is_ok()); | ||
| 1242 | } | ||
| 1243 | |||
| 1244 | |||
| 169 | pmbaty | 1245 | /// Position::pos_is_ok() performs some consistency checks for the | 
| 1246 | /// position object and raises an asserts if something wrong is detected. | ||
| 96 | pmbaty | 1247 | /// This is meant to be helpful when debugging. | 
| 1248 | |||
| 169 | pmbaty | 1249 | bool Position::pos_is_ok() const { | 
| 96 | pmbaty | 1250 | |
| 185 | pmbaty | 1251 | constexpr bool Fast = true; // Quick (default) or full check? | 
| 96 | pmbaty | 1252 | |
| 169 | pmbaty | 1253 | if ( (sideToMove != WHITE && sideToMove != BLACK) | 
| 1254 | || piece_on(square<KING>(WHITE)) != W_KING | ||
| 1255 | || piece_on(square<KING>(BLACK)) != B_KING | ||
| 1256 | || ( ep_square() != SQ_NONE | ||
| 1257 | && relative_rank(sideToMove, ep_square()) != RANK_6)) | ||
| 1258 | assert(0 && "pos_is_ok: Default"); | ||
| 96 | pmbaty | 1259 | |
| 169 | pmbaty | 1260 | if (Fast) | 
| 1261 | return true; | ||
| 96 | pmbaty | 1262 | |
| 169 | pmbaty | 1263 | if ( pieceCount[W_KING] != 1 | 
| 1264 | || pieceCount[B_KING] != 1 | ||
| 1265 | || attackers_to(square<KING>(~sideToMove)) & pieces(sideToMove)) | ||
| 1266 | assert(0 && "pos_is_ok: Kings"); | ||
| 96 | pmbaty | 1267 | |
| 169 | pmbaty | 1268 | if ( (pieces(PAWN) & (Rank1BB | Rank8BB)) | 
| 1269 | || pieceCount[W_PAWN] > 8 | ||
| 1270 | || pieceCount[B_PAWN] > 8) | ||
| 1271 | assert(0 && "pos_is_ok: Pawns"); | ||
| 96 | pmbaty | 1272 | |
| 169 | pmbaty | 1273 | if ( (pieces(WHITE) & pieces(BLACK)) | 
| 1274 | || (pieces(WHITE) | pieces(BLACK)) != pieces() | ||
| 1275 | || popcount(pieces(WHITE)) > 16 | ||
| 1276 | || popcount(pieces(BLACK)) > 16) | ||
| 1277 | assert(0 && "pos_is_ok: Bitboards"); | ||
| 96 | pmbaty | 1278 | |
| 169 | pmbaty | 1279 | for (PieceType p1 = PAWN; p1 <= KING; ++p1) | 
| 1280 | for (PieceType p2 = PAWN; p2 <= KING; ++p2) | ||
| 1281 | if (p1 != p2 && (pieces(p1) & pieces(p2))) | ||
| 1282 | assert(0 && "pos_is_ok: Bitboards"); | ||
| 96 | pmbaty | 1283 | |
| 169 | pmbaty | 1284 | StateInfo si = *st; | 
| 1285 | set_state(&si); | ||
| 1286 | if (std::memcmp(&si, st, sizeof(StateInfo))) | ||
| 1287 | assert(0 && "pos_is_ok: State"); | ||
| 96 | pmbaty | 1288 | |
| 169 | pmbaty | 1289 | for (Piece pc : Pieces) | 
| 1290 |   { | ||
| 1291 | if ( pieceCount[pc] != popcount(pieces(color_of(pc), type_of(pc))) | ||
| 1292 | || pieceCount[pc] != std::count(board, board + SQUARE_NB, pc)) | ||
| 1293 | assert(0 && "pos_is_ok: Pieces"); | ||
| 154 | pmbaty | 1294 | |
| 169 | pmbaty | 1295 | for (int i = 0; i < pieceCount[pc]; ++i) | 
| 1296 | if (board[pieceList[pc][i]] != pc || index[pieceList[pc][i]] != i) | ||
| 1297 | assert(0 && "pos_is_ok: Index"); | ||
| 1298 |   } | ||
| 96 | pmbaty | 1299 | |
| 169 | pmbaty | 1300 | for (Color c = WHITE; c <= BLACK; ++c) | 
| 1301 | for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1)) | ||
| 1302 |       { | ||
| 1303 | if (!can_castle(c | s)) | ||
| 1304 | continue; | ||
| 96 | pmbaty | 1305 | |
| 169 | pmbaty | 1306 | if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK) | 
| 1307 | || castlingRightsMask[castlingRookSquare[c | s]] != (c | s) | ||
| 1308 | || (castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s)) | ||
| 1309 | assert(0 && "pos_is_ok: Castling"); | ||
| 1310 |       } | ||
| 96 | pmbaty | 1311 | |
| 1312 | return true; | ||
| 1313 | } |