Subversion Repositories Games.Chess Giants

Rev

Rev 154 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
96 pmbaty 1
/*
2
  Stockfish, a UCI chess playing engine derived from Glaurung 2.1
3
  Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
4
  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
5
  Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
6
 
7
  Stockfish is free software: you can redistribute it and/or modify
8
  it under the terms of the GNU General Public License as published by
9
  the Free Software Foundation, either version 3 of the License, or
10
  (at your option) any later version.
11
 
12
  Stockfish is distributed in the hope that it will be useful,
13
  but WITHOUT ANY WARRANTY; without even the implied warranty of
14
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
  GNU General Public License for more details.
16
 
17
  You should have received a copy of the GNU General Public License
18
  along with this program.  If not, see <http://www.gnu.org/licenses/>.
19
*/
20
 
21
#include <algorithm> // For std::min
22
#include <cassert>
23
#include <cstring>   // For std::memset
24
 
25
#include "material.h"
26
#include "thread.h"
27
 
28
using namespace std;
29
 
30
namespace {
31
 
32
  // Polynomial material imbalance parameters
33
 
34
  //                      pair  pawn knight bishop rook queen
35
  const int Linear[6] = { 1667, -168, -1027, -166,  238, -138 };
36
 
37
  const int QuadraticOurs[][PIECE_TYPE_NB] = {
38
    //            OUR PIECES
39
    // pair pawn knight bishop rook queen
40
    {   0                               }, // Bishop pair
41
    {  40,    2                         }, // Pawn
42
    {  32,  255,  -3                    }, // Knight      OUR PIECES
43
    {   0,  104,   4,    0              }, // Bishop
44
    { -26,   -2,  47,   105,  -149      }, // Rook
45
    {-185,   24, 122,   137,  -134,   0 }  // Queen
46
  };
47
 
48
  const int QuadraticTheirs[][PIECE_TYPE_NB] = {
49
    //           THEIR PIECES
50
    // pair pawn knight bishop rook queen
51
    {   0                               }, // Bishop pair
52
    {  36,    0                         }, // Pawn
53
    {   9,   63,   0                    }, // Knight      OUR PIECES
54
    {  59,   65,  42,     0             }, // Bishop
55
    {  46,   39,  24,   -24,    0       }, // Rook
56
    { 101,  100, -37,   141,  268,    0 }  // Queen
57
  };
58
 
59
  // Endgame evaluation and scaling functions are accessed directly and not through
60
  // the function maps because they correspond to more than one material hash key.
61
  Endgame<KXK>    EvaluateKXK[] = { Endgame<KXK>(WHITE),    Endgame<KXK>(BLACK) };
62
 
63
  Endgame<KBPsK>  ScaleKBPsK[]  = { Endgame<KBPsK>(WHITE),  Endgame<KBPsK>(BLACK) };
64
  Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
65
  Endgame<KPsK>   ScaleKPsK[]   = { Endgame<KPsK>(WHITE),   Endgame<KPsK>(BLACK) };
66
  Endgame<KPKP>   ScaleKPKP[]   = { Endgame<KPKP>(WHITE),   Endgame<KPKP>(BLACK) };
67
 
68
  // Helper used to detect a given material distribution
69
  bool is_KXK(const Position& pos, Color us) {
70
    return  !more_than_one(pos.pieces(~us))
71
          && pos.non_pawn_material(us) >= RookValueMg;
72
  }
73
 
74
  bool is_KBPsKs(const Position& pos, Color us) {
75
    return   pos.non_pawn_material(us) == BishopValueMg
76
          && pos.count<BISHOP>(us) == 1
77
          && pos.count<PAWN  >(us) >= 1;
78
  }
79
 
80
  bool is_KQKRPs(const Position& pos, Color us) {
81
    return  !pos.count<PAWN>(us)
82
          && pos.non_pawn_material(us) == QueenValueMg
83
          && pos.count<QUEEN>(us)  == 1
84
          && pos.count<ROOK>(~us) == 1
85
          && pos.count<PAWN>(~us) >= 1;
86
  }
87
 
88
  /// imbalance() calculates the imbalance by comparing the piece count of each
89
  /// piece type for both colors.
90
  template<Color Us>
91
  int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
92
 
93
    const Color Them = (Us == WHITE ? BLACK : WHITE);
94
 
95
    int bonus = 0;
96
 
97
    // Second-degree polynomial material imbalance by Tord Romstad
98
    for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1)
99
    {
100
        if (!pieceCount[Us][pt1])
101
            continue;
102
 
103
        int v = Linear[pt1];
104
 
105
        for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
106
            v +=  QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2]
107
                + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2];
108
 
109
        bonus += pieceCount[Us][pt1] * v;
110
    }
111
 
112
    return bonus;
113
  }
114
 
115
} // namespace
116
 
117
namespace Material {
118
 
119
/// Material::probe() looks up the current position's material configuration in
120
/// the material hash table. It returns a pointer to the Entry if the position
121
/// is found. Otherwise a new Entry is computed and stored there, so we don't
122
/// have to recompute all when the same material configuration occurs again.
123
 
124
Entry* probe(const Position& pos) {
125
 
126
  Key key = pos.material_key();
127
  Entry* e = pos.this_thread()->materialTable[key];
128
 
129
  if (e->key == key)
130
      return e;
131
 
132
  std::memset(e, 0, sizeof(Entry));
133
  e->key = key;
134
  e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
135
  e->gamePhase = pos.game_phase();
136
 
137
  // Let's look if we have a specialized evaluation function for this particular
138
  // material configuration. Firstly we look for a fixed configuration one, then
139
  // for a generic one if the previous search failed.
140
  if ((e->evaluationFunction = pos.this_thread()->endgames.probe<Value>(key)) != nullptr)
141
      return e;
142
 
143
  for (Color c = WHITE; c <= BLACK; ++c)
144
      if (is_KXK(pos, c))
145
      {
146
          e->evaluationFunction = &EvaluateKXK[c];
147
          return e;
148
      }
149
 
150
  // OK, we didn't find any special evaluation function for the current material
151
  // configuration. Is there a suitable specialized scaling function?
152
  EndgameBase<ScaleFactor>* sf;
153
 
154
  if ((sf = pos.this_thread()->endgames.probe<ScaleFactor>(key)) != nullptr)
155
  {
156
      e->scalingFunction[sf->strong_side()] = sf; // Only strong color assigned
157
      return e;
158
  }
159
 
160
  // We didn't find any specialized scaling function, so fall back on generic
161
  // ones that refer to more than one material distribution. Note that in this
162
  // case we don't return after setting the function.
163
  for (Color c = WHITE; c <= BLACK; ++c)
164
  {
165
    if (is_KBPsKs(pos, c))
166
        e->scalingFunction[c] = &ScaleKBPsK[c];
167
 
168
    else if (is_KQKRPs(pos, c))
169
        e->scalingFunction[c] = &ScaleKQKRPs[c];
170
  }
171
 
172
  Value npm_w = pos.non_pawn_material(WHITE);
173
  Value npm_b = pos.non_pawn_material(BLACK);
174
 
175
  if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board
176
  {
177
      if (!pos.count<PAWN>(BLACK))
178
      {
179
          assert(pos.count<PAWN>(WHITE) >= 2);
180
 
181
          e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
182
      }
183
      else if (!pos.count<PAWN>(WHITE))
184
      {
185
          assert(pos.count<PAWN>(BLACK) >= 2);
186
 
187
          e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
188
      }
189
      else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1)
190
      {
191
          // This is a special case because we set scaling functions
192
          // for both colors instead of only one.
193
          e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
194
          e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
195
      }
196
  }
197
 
198
  // Zero or just one pawn makes it difficult to win, even with a small material
199
  // advantage. This catches some trivial draws like KK, KBK and KNK and gives a
200
  // drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
201
  if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg)
202
      e->factor[WHITE] = uint8_t(npm_w <  RookValueMg   ? SCALE_FACTOR_DRAW :
203
                                 npm_b <= BishopValueMg ? 4 : 14);
204
 
205
  if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg)
206
      e->factor[BLACK] = uint8_t(npm_b <  RookValueMg   ? SCALE_FACTOR_DRAW :
207
                                 npm_w <= BishopValueMg ? 4 : 14);
208
 
209
  if (pos.count<PAWN>(WHITE) == 1 && npm_w - npm_b <= BishopValueMg)
210
      e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN;
211
 
212
  if (pos.count<PAWN>(BLACK) == 1 && npm_b - npm_w <= BishopValueMg)
213
      e->factor[BLACK] = (uint8_t) SCALE_FACTOR_ONEPAWN;
214
 
215
  // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
216
  // for the bishop pair "extended piece", which allows us to be more flexible
217
  // in defining bishop pair bonuses.
218
  const int PieceCount[COLOR_NB][PIECE_TYPE_NB] = {
219
  { pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE),
220
    pos.count<BISHOP>(WHITE)    , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) },
221
  { pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK),
222
    pos.count<BISHOP>(BLACK)    , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } };
223
 
224
  e->value = int16_t((imbalance<WHITE>(PieceCount) - imbalance<BLACK>(PieceCount)) / 16);
225
  return e;
226
}
227
 
228
} // namespace Material