Rev 154 | Go to most recent revision | Details | Last modification | View Log | RSS feed
Rev | Author | Line No. | Line |
---|---|---|---|
96 | pmbaty | 1 | /* |
2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
5 | Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
||
6 | |||
7 | Stockfish is free software: you can redistribute it and/or modify |
||
8 | it under the terms of the GNU General Public License as published by |
||
9 | the Free Software Foundation, either version 3 of the License, or |
||
10 | (at your option) any later version. |
||
11 | |||
12 | Stockfish is distributed in the hope that it will be useful, |
||
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
15 | GNU General Public License for more details. |
||
16 | |||
17 | You should have received a copy of the GNU General Public License |
||
18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
19 | */ |
||
20 | |||
21 | #include <algorithm> |
||
22 | |||
23 | #include "bitboard.h" |
||
24 | #include "bitcount.h" |
||
25 | #include "misc.h" |
||
26 | |||
27 | int SquareDistance[SQUARE_NB][SQUARE_NB]; |
||
28 | |||
29 | Bitboard RookMasks [SQUARE_NB]; |
||
30 | Bitboard RookMagics [SQUARE_NB]; |
||
31 | Bitboard* RookAttacks[SQUARE_NB]; |
||
32 | unsigned RookShifts [SQUARE_NB]; |
||
33 | |||
34 | Bitboard BishopMasks [SQUARE_NB]; |
||
35 | Bitboard BishopMagics [SQUARE_NB]; |
||
36 | Bitboard* BishopAttacks[SQUARE_NB]; |
||
37 | unsigned BishopShifts [SQUARE_NB]; |
||
38 | |||
39 | Bitboard SquareBB[SQUARE_NB]; |
||
40 | Bitboard FileBB[FILE_NB]; |
||
41 | Bitboard RankBB[RANK_NB]; |
||
42 | Bitboard AdjacentFilesBB[FILE_NB]; |
||
43 | Bitboard InFrontBB[COLOR_NB][RANK_NB]; |
||
44 | Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; |
||
45 | Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; |
||
46 | Bitboard LineBB[SQUARE_NB][SQUARE_NB]; |
||
47 | Bitboard DistanceRingBB[SQUARE_NB][8]; |
||
48 | Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; |
||
49 | Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; |
||
50 | Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; |
||
51 | Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; |
||
52 | |||
53 | namespace { |
||
54 | |||
55 | // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan |
||
56 | const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL; |
||
57 | const uint32_t DeBruijn32 = 0x783A9B23; |
||
58 | |||
59 | int MSBTable[256]; // To implement software msb() |
||
60 | Square BSFTable[SQUARE_NB]; // To implement software bitscan |
||
61 | Bitboard RookTable[0x19000]; // To store rook attacks |
||
62 | Bitboard BishopTable[0x1480]; // To store bishop attacks |
||
63 | |||
64 | typedef unsigned (Fn)(Square, Bitboard); |
||
65 | |||
66 | void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], |
||
67 | Bitboard masks[], unsigned shifts[], Square deltas[], Fn index); |
||
68 | |||
69 | // bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses |
||
70 | // Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch. |
||
71 | |||
72 | unsigned bsf_index(Bitboard b) { |
||
73 | b ^= b - 1; |
||
74 | return Is64Bit ? (b * DeBruijn64) >> 58 |
||
75 | : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26; |
||
76 | } |
||
77 | } |
||
78 | |||
79 | #ifndef USE_BSFQ |
||
80 | |||
81 | /// Software fall-back of lsb() and msb() for CPU lacking hardware support |
||
82 | |||
83 | Square lsb(Bitboard b) { |
||
84 | return BSFTable[bsf_index(b)]; |
||
85 | } |
||
86 | |||
87 | Square msb(Bitboard b) { |
||
88 | |||
89 | unsigned b32; |
||
90 | int result = 0; |
||
91 | |||
92 | if (b > 0xFFFFFFFF) |
||
93 | { |
||
94 | b >>= 32; |
||
95 | result = 32; |
||
96 | } |
||
97 | |||
98 | b32 = unsigned(b); |
||
99 | |||
100 | if (b32 > 0xFFFF) |
||
101 | { |
||
102 | b32 >>= 16; |
||
103 | result += 16; |
||
104 | } |
||
105 | |||
106 | if (b32 > 0xFF) |
||
107 | { |
||
108 | b32 >>= 8; |
||
109 | result += 8; |
||
110 | } |
||
111 | |||
112 | return Square(result + MSBTable[b32]); |
||
113 | } |
||
114 | |||
115 | #endif // ifndef USE_BSFQ |
||
116 | |||
117 | |||
118 | /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable |
||
119 | /// to be printed to standard output. Useful for debugging. |
||
120 | |||
121 | const std::string Bitboards::pretty(Bitboard b) { |
||
122 | |||
123 | std::string s = "+---+---+---+---+---+---+---+---+\n"; |
||
124 | |||
125 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
126 | { |
||
127 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
128 | s += b & make_square(f, r) ? "| X " : "| "; |
||
129 | |||
130 | s += "|\n+---+---+---+---+---+---+---+---+\n"; |
||
131 | } |
||
132 | |||
133 | return s; |
||
134 | } |
||
135 | |||
136 | |||
137 | /// Bitboards::init() initializes various bitboard tables. It is called at |
||
138 | /// startup and relies on global objects to be already zero-initialized. |
||
139 | |||
140 | void Bitboards::init() { |
||
141 | |||
142 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
143 | { |
||
144 | SquareBB[s] = 1ULL << s; |
||
145 | BSFTable[bsf_index(SquareBB[s])] = s; |
||
146 | } |
||
147 | |||
148 | for (Bitboard b = 2; b < 256; ++b) |
||
149 | MSBTable[b] = MSBTable[b - 1] + !more_than_one(b); |
||
150 | |||
151 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
152 | FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB; |
||
153 | |||
154 | for (Rank r = RANK_1; r <= RANK_8; ++r) |
||
155 | RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB; |
||
156 | |||
157 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
158 | AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); |
||
159 | |||
160 | for (Rank r = RANK_1; r < RANK_8; ++r) |
||
161 | InFrontBB[WHITE][r] = ~(InFrontBB[BLACK][r + 1] = InFrontBB[BLACK][r] | RankBB[r]); |
||
162 | |||
163 | for (Color c = WHITE; c <= BLACK; ++c) |
||
164 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
165 | { |
||
166 | ForwardBB[c][s] = InFrontBB[c][rank_of(s)] & FileBB[file_of(s)]; |
||
167 | PawnAttackSpan[c][s] = InFrontBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)]; |
||
168 | PassedPawnMask[c][s] = ForwardBB[c][s] | PawnAttackSpan[c][s]; |
||
169 | } |
||
170 | |||
171 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) |
||
172 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
||
173 | if (s1 != s2) |
||
174 | { |
||
175 | SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2)); |
||
176 | DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2; |
||
177 | } |
||
178 | |||
179 | int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 }, |
||
180 | {}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } }; |
||
181 | |||
182 | for (Color c = WHITE; c <= BLACK; ++c) |
||
183 | for (PieceType pt = PAWN; pt <= KING; ++pt) |
||
184 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
185 | for (int i = 0; steps[pt][i]; ++i) |
||
186 | { |
||
187 | Square to = s + Square(c == WHITE ? steps[pt][i] : -steps[pt][i]); |
||
188 | |||
189 | if (is_ok(to) && distance(s, to) < 3) |
||
190 | StepAttacksBB[make_piece(c, pt)][s] |= to; |
||
191 | } |
||
192 | |||
193 | Square RookDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W }; |
||
194 | Square BishopDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW }; |
||
195 | |||
196 | init_magics(RookTable, RookAttacks, RookMagics, RookMasks, RookShifts, RookDeltas, magic_index<ROOK>); |
||
197 | init_magics(BishopTable, BishopAttacks, BishopMagics, BishopMasks, BishopShifts, BishopDeltas, magic_index<BISHOP>); |
||
198 | |||
199 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) |
||
200 | { |
||
201 | PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0); |
||
202 | PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0); |
||
203 | |||
204 | for (Piece pc = W_BISHOP; pc <= W_ROOK; ++pc) |
||
205 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
||
206 | { |
||
207 | if (!(PseudoAttacks[pc][s1] & s2)) |
||
208 | continue; |
||
209 | |||
210 | LineBB[s1][s2] = (attacks_bb(pc, s1, 0) & attacks_bb(pc, s2, 0)) | s1 | s2; |
||
211 | BetweenBB[s1][s2] = attacks_bb(pc, s1, SquareBB[s2]) & attacks_bb(pc, s2, SquareBB[s1]); |
||
212 | } |
||
213 | } |
||
214 | } |
||
215 | |||
216 | |||
217 | namespace { |
||
218 | |||
219 | Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) { |
||
220 | |||
221 | Bitboard attack = 0; |
||
222 | |||
223 | for (int i = 0; i < 4; ++i) |
||
224 | for (Square s = sq + deltas[i]; |
||
225 | is_ok(s) && distance(s, s - deltas[i]) == 1; |
||
226 | s += deltas[i]) |
||
227 | { |
||
228 | attack |= s; |
||
229 | |||
230 | if (occupied & s) |
||
231 | break; |
||
232 | } |
||
233 | |||
234 | return attack; |
||
235 | } |
||
236 | |||
237 | |||
238 | // init_magics() computes all rook and bishop attacks at startup. Magic |
||
239 | // bitboards are used to look up attacks of sliding pieces. As a reference see |
||
240 | // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we |
||
241 | // use the so called "fancy" approach. |
||
242 | |||
243 | void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], |
||
244 | Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) { |
||
245 | |||
246 | int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 }, |
||
247 | { 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } }; |
||
248 | |||
249 | Bitboard occupancy[4096], reference[4096], edges, b; |
||
250 | int age[4096] = {0}, current = 0, i, size; |
||
251 | |||
252 | // attacks[s] is a pointer to the beginning of the attacks table for square 's' |
||
253 | attacks[SQ_A1] = table; |
||
254 | |||
255 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
256 | { |
||
257 | // Board edges are not considered in the relevant occupancies |
||
258 | edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); |
||
259 | |||
260 | // Given a square 's', the mask is the bitboard of sliding attacks from |
||
261 | // 's' computed on an empty board. The index must be big enough to contain |
||
262 | // all the attacks for each possible subset of the mask and so is 2 power |
||
263 | // the number of 1s of the mask. Hence we deduce the size of the shift to |
||
264 | // apply to the 64 or 32 bits word to get the index. |
||
265 | masks[s] = sliding_attack(deltas, s, 0) & ~edges; |
||
266 | shifts[s] = (Is64Bit ? 64 : 32) - popcount<Max15>(masks[s]); |
||
267 | |||
268 | // Use Carry-Rippler trick to enumerate all subsets of masks[s] and |
||
269 | // store the corresponding sliding attack bitboard in reference[]. |
||
270 | b = size = 0; |
||
271 | do { |
||
272 | occupancy[size] = b; |
||
273 | reference[size] = sliding_attack(deltas, s, b); |
||
274 | |||
275 | if (HasPext) |
||
276 | attacks[s][pext(b, masks[s])] = reference[size]; |
||
277 | |||
278 | size++; |
||
279 | b = (b - masks[s]) & masks[s]; |
||
280 | } while (b); |
||
281 | |||
282 | // Set the offset for the table of the next square. We have individual |
||
283 | // table sizes for each square with "Fancy Magic Bitboards". |
||
284 | if (s < SQ_H8) |
||
285 | attacks[s + 1] = attacks[s] + size; |
||
286 | |||
287 | if (HasPext) |
||
288 | continue; |
||
289 | |||
290 | PRNG rng(seeds[Is64Bit][rank_of(s)]); |
||
291 | |||
292 | // Find a magic for square 's' picking up an (almost) random number |
||
293 | // until we find the one that passes the verification test. |
||
294 | do { |
||
295 | do |
||
296 | magics[s] = rng.sparse_rand<Bitboard>(); |
||
297 | while (popcount<Max15>((magics[s] * masks[s]) >> 56) < 6); |
||
298 | |||
299 | // A good magic must map every possible occupancy to an index that |
||
300 | // looks up the correct sliding attack in the attacks[s] database. |
||
301 | // Note that we build up the database for square 's' as a side |
||
302 | // effect of verifying the magic. |
||
303 | for (++current, i = 0; i < size; ++i) |
||
304 | { |
||
305 | unsigned idx = index(s, occupancy[i]); |
||
306 | |||
307 | if (age[idx] < current) |
||
308 | { |
||
309 | age[idx] = current; |
||
310 | attacks[s][idx] = reference[i]; |
||
311 | } |
||
312 | else if (attacks[s][idx] != reference[i]) |
||
313 | break; |
||
314 | } |
||
315 | } while (i < size); |
||
316 | } |
||
317 | } |
||
318 | } |