Rev 169 | Details | Compare with Previous | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 96 | pmbaty | 1 | /* |
| 2 | Stockfish, a UCI chess playing engine derived from Glaurung 2.1 |
||
| 3 | Copyright (C) 2004-2008 Tord Romstad (Glaurung author) |
||
| 4 | Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad |
||
| 185 | pmbaty | 5 | Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad |
| 96 | pmbaty | 6 | |
| 7 | Stockfish is free software: you can redistribute it and/or modify |
||
| 8 | it under the terms of the GNU General Public License as published by |
||
| 9 | the Free Software Foundation, either version 3 of the License, or |
||
| 10 | (at your option) any later version. |
||
| 11 | |||
| 12 | Stockfish is distributed in the hope that it will be useful, |
||
| 13 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
| 14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
||
| 15 | GNU General Public License for more details. |
||
| 16 | |||
| 17 | You should have received a copy of the GNU General Public License |
||
| 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. |
||
| 19 | */ |
||
| 20 | |||
| 21 | #include <algorithm> |
||
| 22 | |||
| 23 | #include "bitboard.h" |
||
| 24 | #include "misc.h" |
||
| 25 | |||
| 154 | pmbaty | 26 | uint8_t PopCnt16[1 << 16]; |
| 96 | pmbaty | 27 | int SquareDistance[SQUARE_NB][SQUARE_NB]; |
| 28 | |||
| 29 | Bitboard SquareBB[SQUARE_NB]; |
||
| 30 | Bitboard FileBB[FILE_NB]; |
||
| 31 | Bitboard RankBB[RANK_NB]; |
||
| 32 | Bitboard AdjacentFilesBB[FILE_NB]; |
||
| 169 | pmbaty | 33 | Bitboard ForwardRanksBB[COLOR_NB][RANK_NB]; |
| 96 | pmbaty | 34 | Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; |
| 35 | Bitboard LineBB[SQUARE_NB][SQUARE_NB]; |
||
| 36 | Bitboard DistanceRingBB[SQUARE_NB][8]; |
||
| 169 | pmbaty | 37 | Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB]; |
| 96 | pmbaty | 38 | Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; |
| 39 | Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; |
||
| 40 | Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; |
||
| 169 | pmbaty | 41 | Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; |
| 96 | pmbaty | 42 | |
| 169 | pmbaty | 43 | Magic RookMagics[SQUARE_NB]; |
| 44 | Magic BishopMagics[SQUARE_NB]; |
||
| 45 | |||
| 96 | pmbaty | 46 | namespace { |
| 47 | |||
| 48 | Bitboard RookTable[0x19000]; // To store rook attacks |
||
| 49 | Bitboard BishopTable[0x1480]; // To store bishop attacks |
||
| 50 | |||
| 169 | pmbaty | 51 | void init_magics(Bitboard table[], Magic magics[], Direction directions[]); |
| 96 | pmbaty | 52 | |
| 154 | pmbaty | 53 | // popcount16() counts the non-zero bits using SWAR-Popcount algorithm |
| 54 | |||
| 55 | unsigned popcount16(unsigned u) { |
||
| 56 | u -= (u >> 1) & 0x5555U; |
||
| 57 | u = ((u >> 2) & 0x3333U) + (u & 0x3333U); |
||
| 58 | u = ((u >> 4) + u) & 0x0F0FU; |
||
| 59 | return (u * 0x0101U) >> 8; |
||
| 60 | } |
||
| 96 | pmbaty | 61 | } |
| 62 | |||
| 63 | |||
| 64 | /// Bitboards::pretty() returns an ASCII representation of a bitboard suitable |
||
| 65 | /// to be printed to standard output. Useful for debugging. |
||
| 66 | |||
| 67 | const std::string Bitboards::pretty(Bitboard b) { |
||
| 68 | |||
| 69 | std::string s = "+---+---+---+---+---+---+---+---+\n"; |
||
| 70 | |||
| 71 | for (Rank r = RANK_8; r >= RANK_1; --r) |
||
| 72 | { |
||
| 73 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
| 74 | s += b & make_square(f, r) ? "| X " : "| "; |
||
| 75 | |||
| 76 | s += "|\n+---+---+---+---+---+---+---+---+\n"; |
||
| 77 | } |
||
| 78 | |||
| 79 | return s; |
||
| 80 | } |
||
| 81 | |||
| 82 | |||
| 83 | /// Bitboards::init() initializes various bitboard tables. It is called at |
||
| 84 | /// startup and relies on global objects to be already zero-initialized. |
||
| 85 | |||
| 86 | void Bitboards::init() { |
||
| 87 | |||
| 154 | pmbaty | 88 | for (unsigned i = 0; i < (1 << 16); ++i) |
| 89 | PopCnt16[i] = (uint8_t) popcount16(i); |
||
| 90 | |||
| 96 | pmbaty | 91 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
| 185 | pmbaty | 92 | SquareBB[s] = (1ULL << s); |
| 96 | pmbaty | 93 | |
| 94 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
| 95 | FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB; |
||
| 96 | |||
| 97 | for (Rank r = RANK_1; r <= RANK_8; ++r) |
||
| 98 | RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB; |
||
| 99 | |||
| 100 | for (File f = FILE_A; f <= FILE_H; ++f) |
||
| 101 | AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); |
||
| 102 | |||
| 103 | for (Rank r = RANK_1; r < RANK_8; ++r) |
||
| 169 | pmbaty | 104 | ForwardRanksBB[WHITE][r] = ~(ForwardRanksBB[BLACK][r + 1] = ForwardRanksBB[BLACK][r] | RankBB[r]); |
| 96 | pmbaty | 105 | |
| 106 | for (Color c = WHITE; c <= BLACK; ++c) |
||
| 107 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
| 108 | { |
||
| 169 | pmbaty | 109 | ForwardFileBB [c][s] = ForwardRanksBB[c][rank_of(s)] & FileBB[file_of(s)]; |
| 110 | PawnAttackSpan[c][s] = ForwardRanksBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)]; |
||
| 111 | PassedPawnMask[c][s] = ForwardFileBB [c][s] | PawnAttackSpan[c][s]; |
||
| 96 | pmbaty | 112 | } |
| 113 | |||
| 114 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) |
||
| 115 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
||
| 116 | if (s1 != s2) |
||
| 117 | { |
||
| 118 | SquareDistance[s1][s2] = std::max(distance<File>(s1, s2), distance<Rank>(s1, s2)); |
||
| 185 | pmbaty | 119 | DistanceRingBB[s1][SquareDistance[s1][s2]] |= s2; |
| 96 | pmbaty | 120 | } |
| 121 | |||
| 169 | pmbaty | 122 | int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } }; |
| 96 | pmbaty | 123 | |
| 124 | for (Color c = WHITE; c <= BLACK; ++c) |
||
| 169 | pmbaty | 125 | for (PieceType pt : { PAWN, KNIGHT, KING }) |
| 96 | pmbaty | 126 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
| 127 | for (int i = 0; steps[pt][i]; ++i) |
||
| 128 | { |
||
| 169 | pmbaty | 129 | Square to = s + Direction(c == WHITE ? steps[pt][i] : -steps[pt][i]); |
| 96 | pmbaty | 130 | |
| 131 | if (is_ok(to) && distance(s, to) < 3) |
||
| 169 | pmbaty | 132 | { |
| 133 | if (pt == PAWN) |
||
| 134 | PawnAttacks[c][s] |= to; |
||
| 135 | else |
||
| 136 | PseudoAttacks[pt][s] |= to; |
||
| 137 | } |
||
| 96 | pmbaty | 138 | } |
| 139 | |||
| 185 | pmbaty | 140 | Direction RookDirections[] = { NORTH, EAST, SOUTH, WEST }; |
| 169 | pmbaty | 141 | Direction BishopDirections[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST }; |
| 96 | pmbaty | 142 | |
| 169 | pmbaty | 143 | init_magics(RookTable, RookMagics, RookDirections); |
| 144 | init_magics(BishopTable, BishopMagics, BishopDirections); |
||
| 96 | pmbaty | 145 | |
| 146 | for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) |
||
| 147 | { |
||
| 148 | PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0); |
||
| 149 | PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0); |
||
| 150 | |||
| 169 | pmbaty | 151 | for (PieceType pt : { BISHOP, ROOK }) |
| 96 | pmbaty | 152 | for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) |
| 153 | { |
||
| 169 | pmbaty | 154 | if (!(PseudoAttacks[pt][s1] & s2)) |
| 96 | pmbaty | 155 | continue; |
| 156 | |||
| 169 | pmbaty | 157 | LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2; |
| 158 | BetweenBB[s1][s2] = attacks_bb(pt, s1, SquareBB[s2]) & attacks_bb(pt, s2, SquareBB[s1]); |
||
| 96 | pmbaty | 159 | } |
| 160 | } |
||
| 161 | } |
||
| 162 | |||
| 163 | |||
| 164 | namespace { |
||
| 165 | |||
| 169 | pmbaty | 166 | Bitboard sliding_attack(Direction directions[], Square sq, Bitboard occupied) { |
| 96 | pmbaty | 167 | |
| 168 | Bitboard attack = 0; |
||
| 169 | |||
| 170 | for (int i = 0; i < 4; ++i) |
||
| 169 | pmbaty | 171 | for (Square s = sq + directions[i]; |
| 172 | is_ok(s) && distance(s, s - directions[i]) == 1; |
||
| 173 | s += directions[i]) |
||
| 96 | pmbaty | 174 | { |
| 175 | attack |= s; |
||
| 176 | |||
| 177 | if (occupied & s) |
||
| 178 | break; |
||
| 179 | } |
||
| 180 | |||
| 181 | return attack; |
||
| 182 | } |
||
| 183 | |||
| 184 | |||
| 185 | // init_magics() computes all rook and bishop attacks at startup. Magic |
||
| 186 | // bitboards are used to look up attacks of sliding pieces. As a reference see |
||
| 187 | // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we |
||
| 188 | // use the so called "fancy" approach. |
||
| 189 | |||
| 169 | pmbaty | 190 | void init_magics(Bitboard table[], Magic magics[], Direction directions[]) { |
| 96 | pmbaty | 191 | |
| 169 | pmbaty | 192 | // Optimal PRNG seeds to pick the correct magics in the shortest time |
| 96 | pmbaty | 193 | int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 }, |
| 194 | { 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } }; |
||
| 195 | |||
| 196 | Bitboard occupancy[4096], reference[4096], edges, b; |
||
| 169 | pmbaty | 197 | int epoch[4096] = {}, cnt = 0, size = 0; |
| 96 | pmbaty | 198 | |
| 199 | for (Square s = SQ_A1; s <= SQ_H8; ++s) |
||
| 200 | { |
||
| 201 | // Board edges are not considered in the relevant occupancies |
||
| 202 | edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); |
||
| 203 | |||
| 204 | // Given a square 's', the mask is the bitboard of sliding attacks from |
||
| 205 | // 's' computed on an empty board. The index must be big enough to contain |
||
| 206 | // all the attacks for each possible subset of the mask and so is 2 power |
||
| 207 | // the number of 1s of the mask. Hence we deduce the size of the shift to |
||
| 208 | // apply to the 64 or 32 bits word to get the index. |
||
| 169 | pmbaty | 209 | Magic& m = magics[s]; |
| 210 | m.mask = sliding_attack(directions, s, 0) & ~edges; |
||
| 211 | m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask); |
||
| 96 | pmbaty | 212 | |
| 169 | pmbaty | 213 | // Set the offset for the attacks table of the square. We have individual |
| 214 | // table sizes for each square with "Fancy Magic Bitboards". |
||
| 215 | m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size; |
||
| 216 | |||
| 96 | pmbaty | 217 | // Use Carry-Rippler trick to enumerate all subsets of masks[s] and |
| 218 | // store the corresponding sliding attack bitboard in reference[]. |
||
| 219 | b = size = 0; |
||
| 220 | do { |
||
| 221 | occupancy[size] = b; |
||
| 169 | pmbaty | 222 | reference[size] = sliding_attack(directions, s, b); |
| 96 | pmbaty | 223 | |
| 224 | if (HasPext) |
||
| 169 | pmbaty | 225 | m.attacks[pext(b, m.mask)] = reference[size]; |
| 96 | pmbaty | 226 | |
| 227 | size++; |
||
| 169 | pmbaty | 228 | b = (b - m.mask) & m.mask; |
| 96 | pmbaty | 229 | } while (b); |
| 230 | |||
| 231 | if (HasPext) |
||
| 232 | continue; |
||
| 233 | |||
| 234 | PRNG rng(seeds[Is64Bit][rank_of(s)]); |
||
| 235 | |||
| 236 | // Find a magic for square 's' picking up an (almost) random number |
||
| 237 | // until we find the one that passes the verification test. |
||
| 169 | pmbaty | 238 | for (int i = 0; i < size; ) |
| 239 | { |
||
| 240 | for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; ) |
||
| 241 | m.magic = rng.sparse_rand<Bitboard>(); |
||
| 96 | pmbaty | 242 | |
| 243 | // A good magic must map every possible occupancy to an index that |
||
| 244 | // looks up the correct sliding attack in the attacks[s] database. |
||
| 245 | // Note that we build up the database for square 's' as a side |
||
| 169 | pmbaty | 246 | // effect of verifying the magic. Keep track of the attempt count |
| 247 | // and save it in epoch[], little speed-up trick to avoid resetting |
||
| 248 | // m.attacks[] after every failed attempt. |
||
| 249 | for (++cnt, i = 0; i < size; ++i) |
||
| 96 | pmbaty | 250 | { |
| 169 | pmbaty | 251 | unsigned idx = m.index(occupancy[i]); |
| 96 | pmbaty | 252 | |
| 169 | pmbaty | 253 | if (epoch[idx] < cnt) |
| 96 | pmbaty | 254 | { |
| 169 | pmbaty | 255 | epoch[idx] = cnt; |
| 256 | m.attacks[idx] = reference[i]; |
||
| 96 | pmbaty | 257 | } |
| 169 | pmbaty | 258 | else if (m.attacks[idx] != reference[i]) |
| 96 | pmbaty | 259 | break; |
| 260 | } |
||
| 169 | pmbaty | 261 | } |
| 96 | pmbaty | 262 | } |
| 263 | } |
||
| 264 | } |