Rev 108 | Go to most recent revision | Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 33 | pmbaty | 1 | #include <stdarg.h> |
| 2 | #include <errno.h> |
||
| 3 | #include <ctype.h> |
||
| 4 | #include "chess.h" |
||
| 5 | #include "data.h" |
||
| 6 | #if defined(UNIX) |
||
| 7 | # include <unistd.h> |
||
| 8 | # include <sys/types.h> |
||
| 9 | # include <signal.h> |
||
| 10 | # include <sys/wait.h> |
||
| 11 | # include <sys/times.h> |
||
| 12 | # include <sys/time.h> |
||
| 13 | #else |
||
| 14 | # include <windows.h> |
||
| 15 | # include <winbase.h> |
||
| 16 | # include <wincon.h> |
||
| 17 | # include <io.h> |
||
| 18 | # include <time.h> |
||
| 19 | #endif |
||
| 20 | |||
| 21 | /* |
||
| 22 | ******************************************************************************* |
||
| 23 | * * |
||
| 24 | * AlignedMalloc() is used to allocate memory on a precise boundary, * |
||
| 25 | * primarily to optimize cache performance by forcing the start of the * |
||
| 26 | * memory region being allocated to match up so that a structure will lie * |
||
| 27 | * on a single cache line rather than being split across two, assuming the * |
||
| 28 | * structure is 64 bytes or less of course. * |
||
| 29 | * * |
||
| 30 | ******************************************************************************* |
||
| 31 | */ |
||
| 32 | |||
| 33 | void AlignedMalloc(void **pointer, int alignment, size_t size) { |
||
| 34 | segments[nsegments][0] = malloc(size + alignment - 1); |
||
| 35 | segments[nsegments][1] = |
||
| 36 | (void *) (((uintptr_t) segments[nsegments][0] + alignment - |
||
| 37 | 1) & ~(alignment - 1)); |
||
| 38 | *pointer = segments[nsegments][1]; |
||
| 39 | nsegments++; |
||
| 40 | } |
||
| 41 | |||
| 42 | /* |
||
| 43 | ******************************************************************************* |
||
| 44 | * * |
||
| 45 | * atoiKM() is used to read in an integer value that can have a "K" or "M" * |
||
| 46 | * appended to it to multiply by 1024 or 1024*1024. It returns a 64 bit * |
||
| 47 | * value since memory sizes can exceed 4gb on modern hardware. * |
||
| 48 | * * |
||
| 49 | ******************************************************************************* |
||
| 50 | */ |
||
| 51 | |||
| 52 | uint64_t atoiKM(char *input) { |
||
| 53 | uint64_t size; |
||
| 54 | |||
| 55 | size = atoi(input); |
||
| 56 | if (strchr(input, 'K') || strchr(input, 'k')) |
||
| 57 | size *= 1 << 10; |
||
| 58 | if (strchr(input, 'M') || strchr(input, 'm')) |
||
| 59 | size *= 1 << 20; |
||
| 60 | return size; |
||
| 61 | } |
||
| 62 | |||
| 63 | /* |
||
| 64 | ******************************************************************************* |
||
| 65 | * * |
||
| 66 | * AlignedRemalloc() is used to change the size of a memory block that has * |
||
| 67 | * previously been allocated using AlignedMalloc(). * |
||
| 68 | * * |
||
| 69 | ******************************************************************************* |
||
| 70 | */ |
||
| 71 | |||
| 72 | void AlignedRemalloc(void **pointer, int alignment, size_t size) { |
||
| 73 | int i; |
||
| 74 | for (i = 0; i < nsegments; i++) |
||
| 75 | if (segments[i][1] == *pointer) |
||
| 76 | break; |
||
| 77 | if (i == nsegments) { |
||
| 78 | Print(4095, "ERROR AlignedRemalloc() given an invalid pointer\n"); |
||
| 79 | exit(1); |
||
| 80 | } |
||
| 81 | free(segments[i][0]); |
||
| 82 | segments[i][0] = malloc(size + alignment - 1); |
||
| 83 | segments[i][1] = |
||
| 84 | (void *) (((uintptr_t) segments[i][0] + alignment - 1) & ~(alignment - |
||
| 85 | 1)); |
||
| 86 | *pointer = segments[i][1]; |
||
| 87 | } |
||
| 88 | |||
| 89 | /* |
||
| 90 | ******************************************************************************* |
||
| 91 | * * |
||
| 92 | * BookClusterIn() is used to read a cluster in as characters, then stuff * |
||
| 93 | * the data into a normal array of structures that can be used within Crafty * |
||
| 94 | * without any endian issues. * |
||
| 95 | * * |
||
| 96 | ******************************************************************************* |
||
| 97 | */ |
||
| 98 | void BookClusterIn(FILE * file, int positions, BOOK_POSITION * buffer) { |
||
| 99 | char file_buffer[BOOK_CLUSTER_SIZE * BOOK_POSITION_SIZE]; |
||
| 100 | int i; |
||
| 101 | |||
| 102 | fread(file_buffer, positions, BOOK_POSITION_SIZE, file); |
||
| 103 | for (i = 0; i < positions; i++) { |
||
| 104 | buffer[i].position = |
||
| 105 | BookIn64((unsigned char *) (file_buffer + i * BOOK_POSITION_SIZE)); |
||
| 106 | buffer[i].status_played = |
||
| 107 | BookIn32((unsigned char *) (file_buffer + i * BOOK_POSITION_SIZE + |
||
| 108 | 8)); |
||
| 109 | buffer[i].learn = |
||
| 110 | BookIn32f((unsigned char *) (file_buffer + i * BOOK_POSITION_SIZE + |
||
| 111 | 12)); |
||
| 112 | } |
||
| 113 | } |
||
| 114 | |||
| 115 | /* |
||
| 116 | ******************************************************************************* |
||
| 117 | * * |
||
| 118 | * BookClusterOut() is used to write a cluster out as characters, after * |
||
| 119 | * converting the normal array of structures into character data that is * |
||
| 120 | * Endian-independent. * |
||
| 121 | * * |
||
| 122 | ******************************************************************************* |
||
| 123 | */ |
||
| 124 | void BookClusterOut(FILE * file, int positions, BOOK_POSITION * buffer) { |
||
| 125 | char file_buffer[BOOK_CLUSTER_SIZE * BOOK_POSITION_SIZE]; |
||
| 126 | int i; |
||
| 127 | |||
| 128 | for (i = 0; i < positions; i++) { |
||
| 129 | memcpy(file_buffer + i * BOOK_POSITION_SIZE, |
||
| 130 | BookOut64(buffer[i].position), 8); |
||
| 131 | memcpy(file_buffer + i * BOOK_POSITION_SIZE + 8, |
||
| 132 | BookOut32(buffer[i].status_played), 4); |
||
| 133 | memcpy(file_buffer + i * BOOK_POSITION_SIZE + 12, |
||
| 134 | BookOut32f(buffer[i].learn), 4); |
||
| 135 | } |
||
| 136 | fwrite(file_buffer, positions, BOOK_POSITION_SIZE, file); |
||
| 137 | } |
||
| 138 | |||
| 139 | /* |
||
| 140 | ******************************************************************************* |
||
| 141 | * * |
||
| 142 | * BookIn32f() is used to convert 4 bytes from the book file into a valid 32 * |
||
| 143 | * bit binary value. this eliminates endian worries that make the binary * |
||
| 144 | * book non-portable across many architectures. * |
||
| 145 | * * |
||
| 146 | ******************************************************************************* |
||
| 147 | */ |
||
| 148 | float BookIn32f(unsigned char *ch) { |
||
| 149 | union { |
||
| 150 | float fv; |
||
| 151 | int iv; |
||
| 152 | } temp; |
||
| 153 | |||
| 154 | temp.iv = ch[3] << 24 | ch[2] << 16 | ch[1] << 8 | ch[0]; |
||
| 155 | return temp.fv; |
||
| 156 | } |
||
| 157 | |||
| 158 | /* |
||
| 159 | ******************************************************************************* |
||
| 160 | * * |
||
| 161 | * BookIn32() is used to convert 4 bytes from the book file into a valid 32 * |
||
| 162 | * bit binary value. this eliminates endian worries that make the binary * |
||
| 163 | * book non-portable across many architectures. * |
||
| 164 | * * |
||
| 165 | ******************************************************************************* |
||
| 166 | */ |
||
| 167 | int BookIn32(unsigned char *ch) { |
||
| 168 | return ch[3] << 24 | ch[2] << 16 | ch[1] << 8 | ch[0]; |
||
| 169 | } |
||
| 170 | |||
| 171 | /* |
||
| 172 | ******************************************************************************* |
||
| 173 | * * |
||
| 174 | * BookIn64() is used to convert 8 bytes from the book file into a valid 64 * |
||
| 175 | * bit binary value. this eliminates endian worries that make the binary * |
||
| 176 | * book non-portable across many architectures. * |
||
| 177 | * * |
||
| 178 | ******************************************************************************* |
||
| 179 | */ |
||
| 180 | uint64_t BookIn64(unsigned char *ch) { |
||
| 181 | return (uint64_t) ch[7] << 56 | (uint64_t) ch[6] << 48 | (uint64_t) |
||
| 182 | ch[5] << 40 | (uint64_t) ch[4] << 32 | (uint64_t) ch[3] |
||
| 183 | << 24 | (uint64_t) ch[2] << 16 | (uint64_t) ch[1] << 8 | (uint64_t) |
||
| 184 | ch[0]; |
||
| 185 | } |
||
| 186 | |||
| 187 | /* |
||
| 188 | ******************************************************************************* |
||
| 189 | * * |
||
| 190 | * BookOut32() is used to convert 4 bytes from a valid 32 bit binary value * |
||
| 191 | * to a book value. this eliminates endian worries that make the binary * |
||
| 192 | * book non-portable across many architectures. * |
||
| 193 | * * |
||
| 194 | ******************************************************************************* |
||
| 195 | */ |
||
| 196 | unsigned char *BookOut32(int val) { |
||
| 197 | convert_buff[3] = val >> 24 & 0xff; |
||
| 198 | convert_buff[2] = val >> 16 & 0xff; |
||
| 199 | convert_buff[1] = val >> 8 & 0xff; |
||
| 200 | convert_buff[0] = val & 0xff; |
||
| 201 | return convert_buff; |
||
| 202 | } |
||
| 203 | |||
| 204 | /* |
||
| 205 | ******************************************************************************* |
||
| 206 | * * |
||
| 207 | * BookOut32f() is used to convert 4 bytes from a valid 32 bit binary value * |
||
| 208 | * to a book value. this eliminates endian worries that make the binary * |
||
| 209 | * book non-portable across many architectures. * |
||
| 210 | * * |
||
| 211 | ******************************************************************************* |
||
| 212 | */ |
||
| 213 | unsigned char *BookOut32f(float val) { |
||
| 214 | union { |
||
| 215 | float fv; |
||
| 216 | int iv; |
||
| 217 | } temp; |
||
| 218 | |||
| 219 | temp.fv = val; |
||
| 220 | convert_buff[3] = temp.iv >> 24 & 0xff; |
||
| 221 | convert_buff[2] = temp.iv >> 16 & 0xff; |
||
| 222 | convert_buff[1] = temp.iv >> 8 & 0xff; |
||
| 223 | convert_buff[0] = temp.iv & 0xff; |
||
| 224 | return convert_buff; |
||
| 225 | } |
||
| 226 | |||
| 227 | /* |
||
| 228 | ******************************************************************************* |
||
| 229 | * * |
||
| 230 | * BookOut64() is used to convert 8 bytes from a valid 64 bit binary value * |
||
| 231 | * to a book value. this eliminates endian worries that make the binary * |
||
| 232 | * book non-portable across many architectures. * |
||
| 233 | * * |
||
| 234 | ******************************************************************************* |
||
| 235 | */ |
||
| 236 | unsigned char *BookOut64(uint64_t val) { |
||
| 237 | convert_buff[7] = val >> 56 & 0xff; |
||
| 238 | convert_buff[6] = val >> 48 & 0xff; |
||
| 239 | convert_buff[5] = val >> 40 & 0xff; |
||
| 240 | convert_buff[4] = val >> 32 & 0xff; |
||
| 241 | convert_buff[3] = val >> 24 & 0xff; |
||
| 242 | convert_buff[2] = val >> 16 & 0xff; |
||
| 243 | convert_buff[1] = val >> 8 & 0xff; |
||
| 244 | convert_buff[0] = val & 0xff; |
||
| 245 | return convert_buff; |
||
| 246 | } |
||
| 247 | |||
| 248 | /* |
||
| 249 | ******************************************************************************* |
||
| 250 | * * |
||
| 251 | * the following functions are used to determine if keyboard input is * |
||
| 252 | * present. there are several ways this is done depending on which * |
||
| 253 | * operating system is used. The primary function name is CheckInput() but * |
||
| 254 | * for simplicity there are several O/S-specific versions. * |
||
| 255 | * * |
||
| 256 | ******************************************************************************* |
||
| 257 | */ |
||
| 258 | #if !defined(UNIX) |
||
| 259 | # include <windows.h> |
||
| 260 | # include <conio.h> |
||
| 261 | /* Windows NT using PeekNamedPipe() function */ |
||
| 262 | int CheckInput(void) { |
||
| 263 | int i; |
||
| 264 | static int init = 0, pipe; |
||
| 265 | static HANDLE inh; |
||
| 266 | DWORD dw; |
||
| 267 | |||
| 268 | if (!xboard && !_isatty(_fileno(stdin))) // Pierre-Marie Baty -- use ISO C++ conformant names |
||
| 269 | return 0; |
||
| 270 | if (batch_mode) |
||
| 271 | return 0; |
||
| 272 | if (strchr(cmd_buffer, '\n')) |
||
| 273 | return 1; |
||
| 274 | if (xboard) { |
||
| 275 | # if defined(FILE_CNT) |
||
| 276 | if (stdin->_cnt > 0) |
||
| 277 | return stdin->_cnt; |
||
| 278 | # endif |
||
| 279 | if (!init) { |
||
| 280 | init = 1; |
||
| 281 | inh = GetStdHandle(STD_INPUT_HANDLE); |
||
| 282 | pipe = !GetConsoleMode(inh, &dw); |
||
| 283 | if (!pipe) { |
||
| 284 | SetConsoleMode(inh, dw & ~(ENABLE_MOUSE_INPUT | ENABLE_WINDOW_INPUT)); |
||
| 285 | FlushConsoleInputBuffer(inh); |
||
| 286 | } |
||
| 287 | } |
||
| 288 | if (pipe) { |
||
| 289 | if (!PeekNamedPipe(inh, NULL, 0, NULL, &dw, NULL)) { |
||
| 290 | return 1; |
||
| 291 | } |
||
| 292 | return dw; |
||
| 293 | } else { |
||
| 294 | GetNumberOfConsoleInputEvents(inh, &dw); |
||
| 295 | return dw <= 1 ? 0 : dw; |
||
| 296 | } |
||
| 297 | } else { |
||
| 298 | i = _kbhit(); |
||
| 299 | } |
||
| 300 | return i; |
||
| 301 | } |
||
| 302 | #endif |
||
| 303 | #if defined(UNIX) |
||
| 304 | /* Simple UNIX approach using select with a zero timeout value */ |
||
| 305 | int CheckInput(void) { |
||
| 306 | fd_set readfds; |
||
| 307 | struct timeval tv; |
||
| 308 | int data; |
||
| 309 | |||
| 310 | if (!xboard && !isatty(fileno(stdin))) |
||
| 311 | return 0; |
||
| 312 | if (batch_mode) |
||
| 313 | return 0; |
||
| 314 | if (strchr(cmd_buffer, '\n')) |
||
| 315 | return 1; |
||
| 316 | FD_ZERO(&readfds); |
||
| 317 | FD_SET(fileno(stdin), &readfds); |
||
| 318 | tv.tv_sec = 0; |
||
| 319 | tv.tv_usec = 0; |
||
| 320 | select(16, &readfds, 0, 0, &tv); |
||
| 321 | data = FD_ISSET(fileno(stdin), &readfds); |
||
| 322 | return data; |
||
| 323 | } |
||
| 324 | #endif |
||
| 325 | |||
| 326 | /* |
||
| 327 | ******************************************************************************* |
||
| 328 | * * |
||
| 329 | * ClearHashTableScores() is used to clear hash table scores without * |
||
| 330 | * clearing the best move, so that move ordering information is preserved. * |
||
| 331 | * We clear the scorew as we approach a 50 move rule so that hash scores * |
||
| 332 | * won't give us false scores since the hash signature does not include any * |
||
| 333 | * search path information in it. * |
||
| 334 | * * |
||
| 335 | ******************************************************************************* |
||
| 336 | */ |
||
| 337 | void ClearHashTableScores(void) { |
||
| 338 | size_t i; // Pierre-Marie Baty -- fixed type |
||
| 339 | |||
| 340 | if (trans_ref) |
||
| 341 | for (i = 0; i < hash_table_size; i++) { |
||
| 342 | (trans_ref + i)->word2 ^= (trans_ref + i)->word1; |
||
| 343 | (trans_ref + i)->word1 = |
||
| 344 | ((trans_ref + i)->word1 & mask_clear_entry) | (uint64_t) 65536; |
||
| 345 | (trans_ref + i)->word2 ^= (trans_ref + i)->word1; |
||
| 346 | } |
||
| 347 | } |
||
| 348 | |||
| 349 | /* last modified 02/28/14 */ |
||
| 350 | /* |
||
| 351 | ******************************************************************************* |
||
| 352 | * * |
||
| 353 | * ComputeDifficulty() is used to compute the difficulty rating for the * |
||
| 354 | * current position, which really is based on nothing more than how many * |
||
| 355 | * times we changed our mind in an iteration. No changes caused the * |
||
| 356 | * difficulty to drop (easier, use less time), while more changes ramps the * |
||
| 357 | * difficulty up (harder, use more time). It is called at the end of an * |
||
| 358 | * iteration as well as when displaying fail-high/fail-low moves, in an * |
||
| 359 | * effort to give the operator a heads-up on how long we are going to be * |
||
| 360 | * stuck in an active search. * |
||
| 361 | * * |
||
| 362 | ******************************************************************************* |
||
| 363 | */ |
||
| 364 | int ComputeDifficulty(int difficulty, int direction) { |
||
| 365 | int searched = 0, i; |
||
| 366 | |||
| 367 | /* |
||
| 368 | ************************************************************ |
||
| 369 | * * |
||
| 370 | * Step 1. Handle fail-high-fail low conditions, which * |
||
| 371 | * occur in the middle of an iteration. The actions taken * |
||
| 372 | * are as follows: * |
||
| 373 | * * |
||
| 374 | * (1) Determine how many moves we have searched first, as * |
||
| 375 | * this is important. If we have not searched anything * |
||
| 376 | * (which means we failed high on the first move at the * |
||
| 377 | * root, at the beginning of a new iteration), a fail low * |
||
| 378 | * will immediately set difficult back to 100% (if it is * |
||
| 379 | * currently below 100%). A fail high on the first move * |
||
| 380 | * will not change difficulty at all. Successive fail * |
||
| 381 | * highs or fail lows will not change difficulty, we will * |
||
| 382 | * not even get into this code on the repeats. * |
||
| 383 | * * |
||
| 384 | * (2) If we are beyond the first move, then this must be * |
||
| 385 | * a fail high condition. Since we are changing our mind, * |
||
| 386 | * we need to increase the difficulty level to expend more * |
||
| 387 | * time on this iteration. If difficulty is currently * |
||
| 388 | * less than 100%, we set it to 120%. If it is currently * |
||
| 389 | * at 100% or more, we simply add 20% to the value and * |
||
| 390 | * continue searching, but with a longer time constraint. * |
||
| 391 | * Each time we fail high, we are changing our mind, and * |
||
| 392 | * we will increase difficulty by another 20%. * |
||
| 393 | * * |
||
| 394 | * (3) Direction = 0 means we are at the end of an the * |
||
| 395 | * iteration. Here we simply note if we changed our mind * |
||
| 396 | * during this iteration. If not, we reduce difficulty * |
||
| 397 | * to 90% of its previous value. * |
||
| 398 | * * |
||
| 399 | * After any of these changes, we enforce a lower bound of * |
||
| 400 | * 60% and an upperbound of 200% before we return. * |
||
| 401 | * * |
||
| 402 | * Note: direction = +1 means we failed high on the move, * |
||
| 403 | * direction = -1 means we failed low on the move, and * |
||
| 404 | * direction = 0 means we have completed the iteration and * |
||
| 405 | * all moves were searched successfully. * |
||
| 406 | * * |
||
| 407 | ************************************************************ |
||
| 408 | */ |
||
| 409 | if (direction) { |
||
| 410 | for (i = 0; i < n_root_moves; i++) |
||
| 411 | if (root_moves[i].status & 8) |
||
| 412 | searched++; |
||
| 413 | if (searched == 0) { |
||
| 414 | if (direction > 0) |
||
| 415 | return difficulty; |
||
| 416 | if (direction < 0) |
||
| 417 | difficulty = Max(100, difficulty); |
||
| 418 | } else { |
||
| 419 | if (difficulty < 100) |
||
| 420 | difficulty = 120; |
||
| 421 | else |
||
| 422 | difficulty = difficulty + 20; |
||
| 423 | } |
||
| 424 | } |
||
| 425 | /* |
||
| 426 | ************************************************************ |
||
| 427 | * * |
||
| 428 | * Step 2. We are at the end of an iteration. If we did * |
||
| 429 | * not change our mind and stuck with one move, we reduce * |
||
| 430 | * difficulty by 10% since the move looks to be a little * |
||
| 431 | * "easier" when we don't change our mind. * |
||
| 432 | * * |
||
| 433 | ************************************************************ |
||
| 434 | */ |
||
| 435 | else { |
||
| 436 | searched = 0; |
||
| 437 | for (i = 0; i < n_root_moves; i++) |
||
| 438 | if (root_moves[i].bm_age == 3) |
||
| 439 | searched++; |
||
| 440 | if (searched <= 1) |
||
| 441 | difficulty = 90 * difficulty / 100; |
||
| 442 | } |
||
| 443 | /* |
||
| 444 | ************************************************************ |
||
| 445 | * * |
||
| 446 | * Step 4. Apply limits. We don't let difficulty go * |
||
| 447 | * above 200% (take 2x the target time) nor do we let it * |
||
| 448 | * drop below 60 (take .6x target time) to avoid moving * |
||
| 449 | * too quickly and missing something tactically where the * |
||
| 450 | * move initially looks obvious but really is not. * |
||
| 451 | * * |
||
| 452 | ************************************************************ |
||
| 453 | */ |
||
| 454 | difficulty = Max(60, Min(difficulty, 200)); |
||
| 455 | return difficulty; |
||
| 456 | } |
||
| 457 | |||
| 458 | /* |
||
| 459 | ******************************************************************************* |
||
| 460 | * * |
||
| 461 | * CraftyExit() is used to terminate the program. the main functionality * |
||
| 462 | * is to make sure the "quit" flag is set so that any spinning threads will * |
||
| 463 | * also exit() rather than spinning forever which can cause GUIs to hang * |
||
| 464 | * since all processes have not terminated. * |
||
| 465 | * * |
||
| 466 | ******************************************************************************* |
||
| 467 | */ |
||
| 468 | void CraftyExit(int exit_type) { |
||
| 469 | int proc; |
||
| 470 | |||
| 471 | for (proc = 1; proc < CPUS; proc++) |
||
| 472 | thread[proc].tree = (TREE *) - 1; |
||
| 473 | while (smp_threads); |
||
| 474 | exit(exit_type); |
||
| 475 | } |
||
| 476 | |||
| 477 | /* |
||
| 478 | ******************************************************************************* |
||
| 479 | * * |
||
| 480 | * DisplayArray() prints array data either 8 or 16 values per line, and also * |
||
| 481 | * reverses the output for arrays that overlay the chess board so that the * |
||
| 482 | * 'white side" is at the bottom rather than the top. this is mainly used * |
||
| 483 | * from inside Option() to display the many evaluation terms. * |
||
| 484 | * * |
||
| 485 | ******************************************************************************* |
||
| 486 | */ |
||
| 487 | void DisplayArray(int *array, int size) { |
||
| 488 | int i, j, len = 16; |
||
| 489 | |||
| 490 | if (Abs(size) % 10 == 0) |
||
| 491 | len = 10; |
||
| 492 | else if (Abs(size) % 8 == 0) |
||
| 493 | len = 8; |
||
| 494 | if (size > 0 && size % 16 == 0 && len == 8) |
||
| 495 | len = 16; |
||
| 496 | if (size > 0) { |
||
| 497 | printf(" "); |
||
| 498 | for (i = 0; i < size; i++) { |
||
| 499 | printf("%3d ", array[i]); |
||
| 500 | if ((i + 1) % len == 0) { |
||
| 501 | printf("\n"); |
||
| 502 | if (i < size - 1) |
||
| 503 | printf(" "); |
||
| 504 | } |
||
| 505 | } |
||
| 506 | if (i % len != 0) |
||
| 507 | printf("\n"); |
||
| 508 | } |
||
| 509 | if (size < 0) { |
||
| 510 | for (i = 0; i < 8; i++) { |
||
| 511 | printf(" "); |
||
| 512 | for (j = 0; j < 8; j++) { |
||
| 513 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
| 514 | } |
||
| 515 | printf(" | %d\n", 8 - i); |
||
| 516 | } |
||
| 517 | printf(" ---------------------------------\n"); |
||
| 518 | printf(" a b c d e f g h\n"); |
||
| 519 | } |
||
| 520 | } |
||
| 521 | |||
| 522 | /* |
||
| 523 | ******************************************************************************* |
||
| 524 | * * |
||
| 525 | * DisplayArray() prints array data either 8 or 16 values per line, and also * |
||
| 526 | * reverses the output for arrays that overlay the chess board so that the * |
||
| 527 | * 'white side" is at the bottom rather than the top. this is mainly used * |
||
| 528 | * from inside Option() to display the many evaluation terms. * |
||
| 529 | * * |
||
| 530 | ******************************************************************************* |
||
| 531 | */ |
||
| 532 | void DisplayArrayX2(int *array, int *array2, int size) { |
||
| 533 | int i, j; |
||
| 534 | |||
| 535 | if (size == 256) { |
||
| 536 | printf(" ----------- Middlegame ----------- "); |
||
| 537 | printf(" ------------- Endgame -----------\n"); |
||
| 538 | for (i = 0; i < 8; i++) { |
||
| 539 | printf(" "); |
||
| 540 | for (j = 0; j < 8; j++) |
||
| 541 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
| 542 | printf(" | %d |", 8 - i); |
||
| 543 | printf(" "); |
||
| 544 | for (j = 0; j < 8; j++) |
||
| 545 | printf("%3d ", array2[(7 - i) * 8 + j]); |
||
| 546 | printf("\n"); |
||
| 547 | } |
||
| 548 | printf |
||
| 549 | (" ---------------------------------- ---------------------------------\n"); |
||
| 550 | printf(" a b c d e f g h "); |
||
| 551 | printf(" a b c d e f g h\n"); |
||
| 552 | } else if (size == 32) { |
||
| 553 | printf(" ----------- Middlegame ----------- "); |
||
| 554 | printf(" ------------- Endgame -----------\n"); |
||
| 555 | printf(" "); |
||
| 556 | for (i = 0; i < 8; i++) |
||
| 557 | printf("%3d ", array[i]); |
||
| 558 | printf(" | |"); |
||
| 559 | printf(" "); |
||
| 560 | for (i = 0; i < 8; i++) |
||
| 561 | printf("%3d ", array2[i]); |
||
| 562 | printf("\n"); |
||
| 563 | } else if (size <= 20) { |
||
| 564 | size = size / 2; |
||
| 565 | printf(" "); |
||
| 566 | for (i = 0; i < size; i++) |
||
| 567 | printf("%3d ", array[i]); |
||
| 568 | printf(" |<mg eg>|"); |
||
| 569 | printf(" "); |
||
| 570 | for (i = 0; i < size; i++) |
||
| 571 | printf("%3d ", array2[i]); |
||
| 572 | printf("\n"); |
||
| 573 | } else if (size > 128) { |
||
| 574 | printf(" ----------- Middlegame ----------- "); |
||
| 575 | printf(" ------------- Endgame -----------\n"); |
||
| 576 | for (i = 0; i < size / 32; i++) { |
||
| 577 | printf(" "); |
||
| 578 | for (j = 0; j < 8; j++) |
||
| 579 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
| 580 | printf(" | %d |", 8 - i); |
||
| 581 | printf(" "); |
||
| 582 | for (j = 0; j < 8; j++) |
||
| 583 | printf("%3d ", array2[(7 - i) * 8 + j]); |
||
| 584 | printf("\n"); |
||
| 585 | } |
||
| 586 | } else |
||
| 587 | Print(4095, "ERROR, invalid size = -%d in packet\n", size); |
||
| 588 | } |
||
| 589 | |||
| 590 | /* |
||
| 591 | ******************************************************************************* |
||
| 592 | * * |
||
| 593 | * DisplayBitBoard() is a debugging function used to display bitboards in a * |
||
| 594 | * more visual way. they are displayed as an 8x8 matrix oriented as the * |
||
| 595 | * normal chess board is, with a1 at the lower left corner. * |
||
| 596 | * * |
||
| 597 | ******************************************************************************* |
||
| 598 | */ |
||
| 599 | void DisplayBitBoard(uint64_t board) { |
||
| 600 | int i, j, x; |
||
| 601 | |||
| 602 | for (i = 56; i >= 0; i -= 8) { |
||
| 603 | x = (board >> i) & 255; |
||
| 604 | for (j = 1; j < 256; j = j << 1) |
||
| 605 | if (x & j) |
||
| 606 | printf("X "); |
||
| 607 | else |
||
| 608 | printf("- "); |
||
| 609 | printf("\n"); |
||
| 610 | } |
||
| 611 | } |
||
| 612 | |||
| 613 | /* |
||
| 614 | ******************************************************************************* |
||
| 615 | * * |
||
| 616 | * Display2BitBoards() is a debugging function used to display bitboards in * |
||
| 617 | * a more visual way. they are displayed as an 8x8 matrix oriented as the * |
||
| 618 | * normal chess board is, with a1 at the lower left corner. this function * |
||
| 619 | * displays 2 boards side by side for comparison. * |
||
| 620 | * * |
||
| 621 | ******************************************************************************* |
||
| 622 | */ |
||
| 623 | void Display2BitBoards(uint64_t board1, uint64_t board2) { |
||
| 624 | int i, j, x, y; |
||
| 625 | |||
| 626 | for (i = 56; i >= 0; i -= 8) { |
||
| 627 | x = (board1 >> i) & 255; |
||
| 628 | for (j = 1; j < 256; j = j << 1) |
||
| 629 | if (x & j) |
||
| 630 | printf("X "); |
||
| 631 | else |
||
| 632 | printf("- "); |
||
| 633 | printf(" "); |
||
| 634 | y = (board2 >> i) & 255; |
||
| 635 | for (j = 1; j < 256; j = j << 1) |
||
| 636 | if (y & j) |
||
| 637 | printf("X "); |
||
| 638 | else |
||
| 639 | printf("- "); |
||
| 640 | printf("\n"); |
||
| 641 | } |
||
| 642 | } |
||
| 643 | |||
| 644 | /* |
||
| 645 | ******************************************************************************* |
||
| 646 | * * |
||
| 647 | * DisplayChessBoard() is used to display the board since it is kept in * |
||
| 648 | * both the bit-board and array formats, here we use the array format which * |
||
| 649 | * is nearly ready for display as is. * |
||
| 650 | * * |
||
| 651 | ******************************************************************************* |
||
| 652 | */ |
||
| 653 | void DisplayChessBoard(FILE * display_file, POSITION pos) { |
||
| 654 | int display_board[64]; |
||
| 655 | static const char display_string[16][4] = |
||
| 656 | { "<K>", "<Q>", "<R>", "<B>", "<N>", "<P>", " ", |
||
| 657 | "-P-", "-N-", "-B-", "-R-", "-Q-", "-K-", " . " |
||
| 658 | }; |
||
| 659 | int i, j; |
||
| 660 | |||
| 661 | /* |
||
| 662 | ************************************************************ |
||
| 663 | * * |
||
| 664 | * First, convert square values to indices to the proper * |
||
| 665 | * text string. * |
||
| 666 | * * |
||
| 667 | ************************************************************ |
||
| 668 | */ |
||
| 669 | for (i = 0; i < 64; i++) { |
||
| 670 | display_board[i] = pos.board[i] + 6; |
||
| 671 | if (pos.board[i] == 0) { |
||
| 672 | if (((i / 8) & 1) == ((i % 8) & 1)) |
||
| 673 | display_board[i] = 13; |
||
| 674 | } |
||
| 675 | } |
||
| 676 | /* |
||
| 677 | ************************************************************ |
||
| 678 | * * |
||
| 679 | * Now that that's done, simply display using 8 squares * |
||
| 680 | * per line. * |
||
| 681 | * * |
||
| 682 | ************************************************************ |
||
| 683 | */ |
||
| 684 | fprintf(display_file, "\n +---+---+---+---+---+---+---+---+\n"); |
||
| 685 | for (i = 7; i >= 0; i--) { |
||
| 686 | fprintf(display_file, " %2d ", i + 1); |
||
| 687 | for (j = 0; j < 8; j++) |
||
| 688 | fprintf(display_file, "|%s", display_string[display_board[i * 8 + j]]); |
||
| 689 | fprintf(display_file, "|\n"); |
||
| 690 | fprintf(display_file, " +---+---+---+---+---+---+---+---+\n"); |
||
| 691 | } |
||
| 692 | fprintf(display_file, " a b c d e f g h\n\n"); |
||
| 693 | } |
||
| 694 | |||
| 695 | /* |
||
| 696 | ******************************************************************************* |
||
| 697 | * * |
||
| 698 | * DisplayEvaluation() is used to convert the evaluation to a string that * |
||
| 699 | * can be displayed. The length is fixed so that screen formatting will * |
||
| 700 | * look nice and aligned. * |
||
| 701 | * * |
||
| 702 | ******************************************************************************* |
||
| 703 | */ |
||
| 704 | char *DisplayEvaluation(int value, int wtm) { |
||
| 705 | static char out[10]; |
||
| 706 | int tvalue; |
||
| 707 | |||
| 708 | tvalue = (wtm) ? value : -value; |
||
| 709 | if (!MateScore(value)) |
||
| 710 | sprintf_s(out, sizeof (out), "%7.2f", ((float) tvalue) / 100.0); // Pierre-Marie Baty -- use safe version |
||
| 711 | else if (Abs(value) > MATE) { |
||
| 712 | if (tvalue < 0) |
||
| 713 | sprintf_s(out, sizeof (out), " -infnty"); // Pierre-Marie Baty -- use safe version |
||
| 714 | else |
||
| 715 | sprintf_s(out, sizeof (out), " +infnty"); // Pierre-Marie Baty -- use safe version |
||
| 716 | } else if (value == MATE - 2 && wtm) |
||
| 717 | sprintf_s(out, sizeof (out), " Mate"); // Pierre-Marie Baty -- use safe version |
||
| 718 | else if (value == MATE - 2 && !wtm) |
||
| 719 | sprintf_s(out, sizeof (out), " -Mate"); // Pierre-Marie Baty -- use safe version |
||
| 720 | else if (value == -(MATE - 1) && wtm) |
||
| 721 | sprintf_s(out, sizeof (out), " -Mate"); // Pierre-Marie Baty -- use safe version |
||
| 722 | else if (value == -(MATE - 1) && !wtm) |
||
| 723 | sprintf_s(out, sizeof (out), " Mate"); // Pierre-Marie Baty -- use safe version |
||
| 724 | else if (value > 0 && wtm) |
||
| 725 | sprintf_s(out, sizeof (out), " Mat%.2d", (MATE - value) / 2); // Pierre-Marie Baty -- use safe version |
||
| 726 | else if (value > 0 && !wtm) |
||
| 727 | sprintf_s(out, sizeof (out), " -Mat%.2d", (MATE - value) / 2); // Pierre-Marie Baty -- use safe version |
||
| 728 | else if (wtm) |
||
| 729 | sprintf_s(out, sizeof (out), " -Mat%.2d", (MATE - Abs(value)) / 2); // Pierre-Marie Baty -- use safe version |
||
| 730 | else |
||
| 731 | sprintf_s(out, sizeof (out), " Mat%.2d", (MATE - Abs(value)) / 2); // Pierre-Marie Baty -- use safe version |
||
| 732 | return out; |
||
| 733 | } |
||
| 734 | |||
| 735 | /* |
||
| 736 | ******************************************************************************* |
||
| 737 | * * |
||
| 738 | * DisplayEvaluationKibitz() is used to convert the evaluation to a string * |
||
| 739 | * that can be displayed. The length is variable so that ICC kibitzes and * |
||
| 740 | * whispers will look nicer. * |
||
| 741 | * * |
||
| 742 | ******************************************************************************* |
||
| 743 | */ |
||
| 744 | char *DisplayEvaluationKibitz(int value, int wtm) { |
||
| 745 | static char out[10]; |
||
| 746 | int tvalue; |
||
| 747 | |||
| 748 | tvalue = (wtm) ? value : -value; |
||
| 749 | if (!MateScore(value)) |
||
| 750 | sprintf_s(out, sizeof (out), "%+.2f", ((float) tvalue) / 100.0); // Pierre-Marie Baty -- use safe version |
||
| 751 | else if (Abs(value) > MATE) { |
||
| 752 | if (tvalue < 0) |
||
| 753 | sprintf_s(out, sizeof (out), "-infnty"); // Pierre-Marie Baty -- use safe version |
||
| 754 | else |
||
| 755 | sprintf_s(out, sizeof (out), "+infnty"); // Pierre-Marie Baty -- use safe version |
||
| 756 | } else if (value == MATE - 2 && wtm) |
||
| 757 | sprintf_s(out, sizeof (out), "Mate"); // Pierre-Marie Baty -- use safe version |
||
| 758 | else if (value == MATE - 2 && !wtm) |
||
| 759 | sprintf_s(out, sizeof (out), "-Mate"); // Pierre-Marie Baty -- use safe version |
||
| 760 | else if (value == -(MATE - 1) && wtm) |
||
| 761 | sprintf_s(out, sizeof (out), "-Mate"); // Pierre-Marie Baty -- use safe version |
||
| 762 | else if (value == -(MATE - 1) && !wtm) |
||
| 763 | sprintf_s(out, sizeof (out), "Mate"); // Pierre-Marie Baty -- use safe version |
||
| 764 | else if (value > 0 && wtm) |
||
| 765 | sprintf_s(out, sizeof (out), "Mat%.2d", (MATE - value) / 2); // Pierre-Marie Baty -- use safe version |
||
| 766 | else if (value > 0 && !wtm) |
||
| 767 | sprintf_s(out, sizeof (out), "-Mat%.2d", (MATE - value) / 2); // Pierre-Marie Baty -- use safe version |
||
| 768 | else if (wtm) |
||
| 769 | sprintf_s(out, sizeof (out), "-Mat%.2d", (MATE - Abs(value)) / 2); // Pierre-Marie Baty -- use safe version |
||
| 770 | else |
||
| 771 | sprintf_s(out, sizeof (out), "Mat%.2d", (MATE - Abs(value)) / 2); // Pierre-Marie Baty -- use safe version |
||
| 772 | return out; |
||
| 773 | } |
||
| 774 | |||
| 775 | /* |
||
| 776 | ******************************************************************************* |
||
| 777 | * * |
||
| 778 | * DisplayPV() is used to display a PV during the search. * |
||
| 779 | * * |
||
| 780 | ******************************************************************************* |
||
| 781 | */ |
||
| 782 | void DisplayPV(TREE * RESTRICT tree, int level, int wtm, int time, PATH * pv) { |
||
| 783 | char buffer[4096], *buffp, *bufftemp; |
||
| 784 | int /*i, */t_move_number, type; |
||
| 785 | unsigned int i, buflen; // Pierre-Marie Baty -- fixed type |
||
| 786 | int nskip = 0, twtm = wtm, pv_depth = pv->pathd;; |
||
| 787 | |||
| 788 | /* |
||
| 789 | ************************************************************ |
||
| 790 | * * |
||
| 791 | * Initialize. * |
||
| 792 | * * |
||
| 793 | ************************************************************ |
||
| 794 | */ |
||
| 795 | for (i = 0; i < (unsigned int) n_root_moves; i++) // Pierre-Marie Baty -- part of type fix |
||
| 796 | if (!(root_moves[i].status & 8) && !(root_moves[i].status & 4)) |
||
| 797 | nskip++; |
||
| 798 | if (level == 5) |
||
| 799 | type = 4; |
||
| 800 | else |
||
| 801 | type = 2; |
||
| 802 | t_move_number = move_number; |
||
| 803 | if (display_options & 64) |
||
| 804 | sprintf_s(buffer, sizeof (buffer), " %d.", move_number); // Pierre-Marie Baty -- use safe version |
||
| 805 | else |
||
| 806 | buffer[0] = 0; |
||
| 807 | if ((display_options & 64) && !wtm) |
||
| 808 | strcat_s(buffer, sizeof (buffer), " ..."); // Pierre-Marie Baty -- use safe version |
||
| 809 | for (i = 1; i < (unsigned int) pv->pathl; i++) { // Pierre-Marie Baty -- part of type fix |
||
| 810 | if ((display_options & 64) && i > 1 && wtm) { |
||
| 811 | buflen = strlen (buffer); |
||
| 812 | sprintf_s(buffer + buflen, sizeof (buffer) - buflen, " %d.", t_move_number); // Pierre-Marie Baty -- use safe version |
||
| 813 | } |
||
| 814 | buflen = strlen (buffer); |
||
| 815 | sprintf_s(buffer + buflen, sizeof (buffer) - buflen, " %s", OutputMove(tree, pv->path[i], i, // Pierre-Marie Baty -- use safe version |
||
| 816 | wtm)); |
||
| 817 | MakeMove(tree, i, pv->path[i], wtm); |
||
| 818 | wtm = Flip(wtm); |
||
| 819 | if (wtm) |
||
| 820 | t_move_number++; |
||
| 821 | } |
||
| 822 | if (pv->pathh == 1) |
||
| 823 | strcat_s(buffer, sizeof (buffer), " <HT> "); // Pierre-Marie Baty -- use safe version |
||
| 824 | else if (pv->pathh == 2) |
||
| 825 | strcat_s(buffer, sizeof (buffer), " <EGTB> "); // Pierre-Marie Baty -- use safe version |
||
| 826 | if (strlen(buffer) < 30) |
||
| 827 | for (i = 0; i < 30 - strlen(buffer); i++) |
||
| 828 | strcat_s(buffer, sizeof (buffer), " "); // Pierre-Marie Baty -- use safe version |
||
| 829 | strcpy_s(kibitz_text, sizeof (kibitz_text), buffer); // Pierre-Marie Baty -- use safe version |
||
| 830 | if (nskip > 1 && smp_max_threads > 1) { |
||
| 831 | buflen = strlen (buffer); |
||
| 832 | sprintf_s(buffer + buflen, sizeof (buffer) - buflen, " (s=%d)", nskip); // Pierre-Marie Baty -- use safe version |
||
| 833 | } |
||
| 834 | if (tree->nodes_searched > noise_level) { |
||
| 835 | noise_block = 0; |
||
| 836 | Lock(lock_io); |
||
| 837 | Print(type, " "); |
||
| 838 | if (level == 6) |
||
| 839 | Print(type, "%2i %s%s ", pv_depth, Display2Times(time), |
||
| 840 | DisplayEvaluation(pv->pathv, twtm)); |
||
| 841 | else |
||
| 842 | Print(type, "%2i-> %s%s ", pv_depth, Display2Times(time) |
||
| 843 | , DisplayEvaluation(pv->pathv, twtm)); |
||
| 844 | buffp = buffer + 1; |
||
| 845 | do { |
||
| 846 | if ((int) strlen(buffp) > line_length - 42) |
||
| 847 | bufftemp = strchr(buffp + line_length - 42, ' '); |
||
| 848 | else |
||
| 849 | bufftemp = 0; |
||
| 850 | if (bufftemp) |
||
| 851 | *bufftemp = 0; |
||
| 852 | Print(type, "%s\n", buffp); |
||
| 853 | buffp = bufftemp + 1; |
||
| 854 | if (bufftemp) |
||
| 855 | Print(type, " "); |
||
| 856 | } while (bufftemp); |
||
| 857 | idle_percent = |
||
| 858 | 100 - Min(100, |
||
| 859 | 100 * idle_time / (smp_max_threads * (end_time - start_time) + 1)); |
||
| 860 | Kibitz(level, twtm, pv_depth, end_time - start_time, pv->pathv, |
||
| 861 | tree->nodes_searched, idle_percent, tree->egtb_probes_successful, |
||
| 862 | kibitz_text); |
||
| 863 | Unlock(lock_io); |
||
| 864 | } |
||
| 865 | for (i = pv->pathl - 1; i > 0; i--) { |
||
| 866 | wtm = Flip(wtm); |
||
| 867 | UnmakeMove(tree, i, pv->path[i], wtm); |
||
| 868 | } |
||
| 869 | } |
||
| 870 | |||
| 871 | /* |
||
| 872 | ******************************************************************************* |
||
| 873 | * * |
||
| 874 | * DisplayHHMMSS is used to convert integer time values in 1/100th second * |
||
| 875 | * units into a traditional output format for time, hh:mm:ss rather than * |
||
| 876 | * just nnn.n seconds. * |
||
| 877 | * * |
||
| 878 | ******************************************************************************* |
||
| 879 | */ |
||
| 880 | char *DisplayHHMMSS(unsigned int time) { |
||
| 881 | static char out[10]; |
||
| 882 | |||
| 883 | time = time / 100; |
||
| 884 | sprintf_s(out, sizeof (out), "%3u:%02u:%02u", time / 3600, time / 60, time % 60); // Pierre-Marie Baty -- use safe version |
||
| 885 | return out; |
||
| 886 | } |
||
| 887 | |||
| 888 | /* |
||
| 889 | ******************************************************************************* |
||
| 890 | * * |
||
| 891 | * DisplayHHMM is used to convert integer time values in 1/100th second * |
||
| 892 | * units into a traditional output format for time, mm:ss rather than just * |
||
| 893 | * nnn.n seconds. * |
||
| 894 | * * |
||
| 895 | ******************************************************************************* |
||
| 896 | */ |
||
| 897 | char *DisplayHHMM(unsigned int time) { |
||
| 898 | static char out[10]; |
||
| 899 | |||
| 900 | time = time / 6000; |
||
| 901 | sprintf_s(out, sizeof (out), "%3u:%02u", time / 60, time % 60); // Pierre-Marie Baty -- use safe version |
||
| 902 | return out; |
||
| 903 | } |
||
| 904 | |||
| 905 | /* |
||
| 906 | ******************************************************************************* |
||
| 907 | * * |
||
| 908 | * DisplayKMB() takes an integer value that represents nodes per second, or * |
||
| 909 | * just total nodes, and converts it into a more compact form, so that * |
||
| 910 | * instead of nps=57200931, we get nps=57M. * |
||
| 911 | * * |
||
| 912 | ******************************************************************************* |
||
| 913 | */ |
||
| 914 | char *DisplayKMB(uint64_t val) { |
||
| 915 | static char out[10]; |
||
| 916 | |||
| 917 | if (val < 1000) |
||
| 918 | sprintf_s(out, sizeof (out), "%" PRIu64, val); // Pierre-Marie Baty -- use safe version |
||
| 919 | else if (val < 1000000) |
||
| 920 | sprintf_s(out, sizeof (out), "%.1fK", (double) (val + 500) / 1000); // Pierre-Marie Baty -- use safe version |
||
| 921 | else if (val < 1000000000) |
||
| 922 | sprintf_s(out, sizeof (out), "%.1fM", (double) (val + 500000) / 1000000); // Pierre-Marie Baty -- use safe version |
||
| 923 | else |
||
| 924 | sprintf_s(out, sizeof (out), "%.1fB", (double) (val + 500000000) / 1000000000); // Pierre-Marie Baty -- use safe version |
||
| 925 | return out; |
||
| 926 | } |
||
| 927 | |||
| 928 | /* |
||
| 929 | ******************************************************************************* |
||
| 930 | * * |
||
| 931 | * DisplayTime() is used to display search times, and shows times in one of * |
||
| 932 | * two ways depending on the value passed in. If less than 60 seconds is to * |
||
| 933 | * be displayed, it is displayed as a decimal fraction like 32.7, while if * |
||
| 934 | * more than 60 seconds is to be displayed, it is converted to the more * |
||
| 935 | * traditional mm:ss form. The string it produces is of fixed length to * |
||
| 936 | * provide neater screen formatting. * |
||
| 937 | * * |
||
| 938 | ******************************************************************************* |
||
| 939 | */ |
||
| 940 | char *DisplayTime(unsigned int time) { |
||
| 941 | static char out[10]; |
||
| 942 | |||
| 943 | if (time < 6000) |
||
| 944 | sprintf_s(out, sizeof (out), "%6.2f", (float) time / 100.0); // Pierre-Marie Baty -- use safe version |
||
| 945 | else { |
||
| 946 | time = time / 100; |
||
| 947 | sprintf_s(out, sizeof (out), "%3u:%02u", time / 60, time % 60); // Pierre-Marie Baty -- use safe version |
||
| 948 | } |
||
| 949 | return out; |
||
| 950 | } |
||
| 951 | |||
| 952 | /* |
||
| 953 | ******************************************************************************* |
||
| 954 | * * |
||
| 955 | * Display2Times() is used to display search times, and shows times in one * |
||
| 956 | * of two ways depending on the value passed in. If less than 60 seconds is * |
||
| 957 | * to be displayed, it is displayed as a decimal fraction like 32.7, while * |
||
| 958 | * if more than 60 seconds is to be displayed, it is converted to the more * |
||
| 959 | * traditional mm:ss form. The string it produces is of fixed length to * |
||
| 960 | * provide neater screen formatting. * |
||
| 961 | * * |
||
| 962 | * The second argument is the "difficulty" value which lets us display the * |
||
| 963 | * target time (as modified by difficulty) so that it is possible to know * |
||
| 964 | * roughly when the move will be announced. * |
||
| 965 | * * |
||
| 966 | ******************************************************************************* |
||
| 967 | */ |
||
| 968 | char *Display2Times(unsigned int time) { |
||
| 969 | static char out[20], tout[10]; |
||
| 970 | int ttime; |
||
| 971 | int c, spaces; |
||
| 972 | |||
| 973 | if (time < 6000) |
||
| 974 | sprintf_s(out, sizeof (out), "%6.2f", (float) time / 100.0); // Pierre-Marie Baty -- use safe version |
||
| 975 | else { |
||
| 976 | time = time / 100; |
||
| 977 | sprintf_s(out, sizeof (out), "%3u:%02u", time / 60, time % 60); // Pierre-Marie Baty -- use safe version |
||
| 978 | } |
||
| 979 | if (search_time_limit) |
||
| 980 | ttime = search_time_limit; |
||
| 981 | else |
||
| 982 | ttime = difficulty * time_limit / 100; |
||
| 983 | if (ttime < 360000) { |
||
| 984 | if (ttime < 6000) |
||
| 985 | sprintf_s(tout, sizeof (tout), "%6.2f", (float) ttime / 100.0); // Pierre-Marie Baty -- use safe version |
||
| 986 | else { |
||
| 987 | ttime = ttime / 100; |
||
| 988 | sprintf_s(tout, sizeof (tout), "%3u:%02u", ttime / 60, ttime % 60); // Pierre-Marie Baty -- use safe version |
||
| 989 | } |
||
| 990 | c = strspn(tout, " "); |
||
| 991 | strcat_s(out, sizeof (out), "/"); // Pierre-Marie Baty -- use safe version |
||
| 992 | strcat_s(out, sizeof (out), tout + c); // Pierre-Marie Baty -- use safe version |
||
| 993 | } |
||
| 994 | spaces = 13 - strlen(out); |
||
| 995 | for (c = 0; c < spaces; c++) |
||
| 996 | strcat_s(out, sizeof (out), " "); // Pierre-Marie Baty -- use safe version |
||
| 997 | return out; |
||
| 998 | } |
||
| 999 | |||
| 1000 | /* |
||
| 1001 | ******************************************************************************* |
||
| 1002 | * * |
||
| 1003 | * DisplayTimeKibitz() behaves just like DisplayTime() except that the * |
||
| 1004 | * string it produces is a variable-length string that is as short as * |
||
| 1005 | * possible to make ICC kibitzes/whispers look neater. * |
||
| 1006 | * * |
||
| 1007 | ******************************************************************************* |
||
| 1008 | */ |
||
| 1009 | char *DisplayTimeKibitz(unsigned int time) { |
||
| 1010 | static char out[10]; |
||
| 1011 | |||
| 1012 | if (time < 6000) |
||
| 1013 | sprintf_s(out, sizeof (out), "%.2f", (float) time / 100.0); // Pierre-Marie Baty -- use safe version |
||
| 1014 | else { |
||
| 1015 | time = time / 100; |
||
| 1016 | sprintf_s(out, sizeof (out), "%u:%02u", time / 60, time % 60); // Pierre-Marie Baty -- use safe version |
||
| 1017 | } |
||
| 1018 | return out; |
||
| 1019 | } |
||
| 1020 | |||
| 1021 | /* |
||
| 1022 | ******************************************************************************* |
||
| 1023 | * * |
||
| 1024 | * DisplayTreeState() is a debugging procedure used to provide some basic * |
||
| 1025 | * information about how the parallel search is progressing. It is invoked * |
||
| 1026 | * by typing a "." (no quotes) while in console mode. * |
||
| 1027 | * * |
||
| 1028 | ******************************************************************************* |
||
| 1029 | */ |
||
| 1030 | void DisplayTreeState(TREE * RESTRICT tree, int sply, int spos, int maxply) { |
||
| 1031 | int left, i, *mvp, parallel = 0; |
||
| 1032 | char buf[1024]; |
||
| 1033 | |||
| 1034 | buf[0] = 0; |
||
| 1035 | if (sply == 1) { |
||
| 1036 | left = 0; |
||
| 1037 | for (i = 0; i < n_root_moves; i++) |
||
| 1038 | if (!(root_moves[i].status & 8)) |
||
| 1039 | left++; |
||
| 1040 | sprintf_s(buf, sizeof (buf), "%d:%d/%d ", 1, left, n_root_moves); // Pierre-Marie Baty -- use safe version |
||
| 1041 | } else { |
||
| 1042 | for (i = 0; i < spos - 6; i++) |
||
| 1043 | strcat_s(buf, sizeof (buf), " "); // Pierre-Marie Baty -- use safe version |
||
| 1044 | sprintf(buf + strlen(buf), "[p%2d] ", tree->thread_id); |
||
| 1045 | } |
||
| 1046 | for (i = Max(sply, 2); i <= maxply; i++) { |
||
| 1047 | left = 0; |
||
| 1048 | for (mvp = tree->last[i - 1]; mvp < tree->last[i]; mvp++) |
||
| 1049 | if (*mvp) |
||
| 1050 | left++; |
||
| 1051 | sprintf(buf + strlen(buf), "%d:%d/%d ", i, left, |
||
| 1052 | (int) (tree->last[i] - tree->last[i - 1])); |
||
| 1053 | if (!(i % 8)) |
||
| 1054 | strcat_s(buf, sizeof (buf), "\n"); // Pierre-Marie Baty -- use safe version |
||
| 1055 | if (tree->nprocs > 1 && tree->ply == i) { |
||
| 1056 | parallel = strlen(buf); |
||
| 1057 | break; |
||
| 1058 | } |
||
| 1059 | if (sply > 1) |
||
| 1060 | break; |
||
| 1061 | } |
||
| 1062 | printf("%s\n", buf); |
||
| 1063 | if (sply == 1 && tree->nprocs) { |
||
| 1064 | for (i = 0; i < smp_max_threads; i++) |
||
| 1065 | if (tree->siblings[i]) |
||
| 1066 | DisplayTreeState(tree->siblings[i], tree->ply + 1, parallel, maxply); |
||
| 1067 | } |
||
| 1068 | } |
||
| 1069 | |||
| 1070 | /* |
||
| 1071 | ******************************************************************************* |
||
| 1072 | * * |
||
| 1073 | * DisplayType3() prints personality parameters that use an 8x8 board for * |
||
| 1074 | * their base values. This prints them side by side with rank/file labels * |
||
| 1075 | * to make it easier to read. * |
||
| 1076 | * * |
||
| 1077 | ******************************************************************************* |
||
| 1078 | */ |
||
| 1079 | void DisplayType3(int *array, int *array2) { |
||
| 1080 | int i, j; |
||
| 1081 | |||
| 1082 | printf(" ----------- Middlegame ----------- "); |
||
| 1083 | printf(" ------------- Endgame -----------\n"); |
||
| 1084 | for (i = 0; i < 8; i++) { |
||
| 1085 | printf(" "); |
||
| 1086 | for (j = 0; j < 8; j++) |
||
| 1087 | printf("%3d ", array[64 + (7 - i) * 8 + j]); |
||
| 1088 | printf(" | %d |", 8 - i); |
||
| 1089 | printf(" "); |
||
| 1090 | for (j = 0; j < 8; j++) |
||
| 1091 | printf("%3d ", array2[64 + (7 - i) * 8 + j]); |
||
| 1092 | printf("\n"); |
||
| 1093 | } |
||
| 1094 | printf |
||
| 1095 | (" ---------------------------------- ---------------------------------\n"); |
||
| 1096 | printf(" a b c d e f g h "); |
||
| 1097 | printf(" a b c d e f g h\n"); |
||
| 1098 | } |
||
| 1099 | |||
| 1100 | /* |
||
| 1101 | ******************************************************************************* |
||
| 1102 | * * |
||
| 1103 | * DisplayType4() prints personality parameters that use an 8x8 board for * |
||
| 1104 | * their base values. This prints them side by side with rank/file labels * |
||
| 1105 | * to make it easier to read. * |
||
| 1106 | * * |
||
| 1107 | ******************************************************************************* |
||
| 1108 | */ |
||
| 1109 | void DisplayType4(int *array, int *array2) { |
||
| 1110 | int i, j; |
||
| 1111 | |||
| 1112 | printf(" ----------- Middlegame ----------- "); |
||
| 1113 | printf(" ------------- Endgame -----------\n"); |
||
| 1114 | for (i = 0; i < 8; i++) { |
||
| 1115 | printf(" "); |
||
| 1116 | for (j = 0; j < 8; j++) |
||
| 1117 | printf("%3d ", array[(7 - i) * 8 + j]); |
||
| 1118 | printf(" | %d |", 8 - i); |
||
| 1119 | printf(" "); |
||
| 1120 | for (j = 0; j < 8; j++) |
||
| 1121 | printf("%3d ", array2[(7 - i) * 8 + j]); |
||
| 1122 | printf("\n"); |
||
| 1123 | } |
||
| 1124 | printf |
||
| 1125 | (" ---------------------------------- ---------------------------------\n"); |
||
| 1126 | printf(" a b c d e f g h "); |
||
| 1127 | printf(" a b c d e f g h\n"); |
||
| 1128 | } |
||
| 1129 | |||
| 1130 | /* |
||
| 1131 | ******************************************************************************* |
||
| 1132 | * * |
||
| 1133 | * DisplayType5() prints personality parameters that use an array[size]. * |
||
| 1134 | * * |
||
| 1135 | ******************************************************************************* |
||
| 1136 | */ |
||
| 1137 | void DisplayType5(int *array, int size) { |
||
| 1138 | int i; |
||
| 1139 | |||
| 1140 | printf(" "); |
||
| 1141 | for (i = 0; i < size; i++) |
||
| 1142 | printf("%4d ", array[i]); |
||
| 1143 | printf("\n"); |
||
| 1144 | } |
||
| 1145 | |||
| 1146 | /* |
||
| 1147 | ******************************************************************************* |
||
| 1148 | * * |
||
| 1149 | * DisplayType6() prints personality parameters that use an array[mg][8] * |
||
| 1150 | * format. * |
||
| 1151 | * * |
||
| 1152 | ******************************************************************************* |
||
| 1153 | */ |
||
| 1154 | void DisplayType6(int *array) { |
||
| 1155 | int i; |
||
| 1156 | |||
| 1157 | printf(" ----------- Middlegame ------------ "); |
||
| 1158 | printf(" ------------- Endgame ------------\n"); |
||
| 1159 | printf(" "); |
||
| 1160 | for (i = 0; i < 8; i++) |
||
| 1161 | printf("%3d ", array[i]); |
||
| 1162 | printf(" | |"); |
||
| 1163 | printf(" "); |
||
| 1164 | for (i = 8; i < 16; i++) |
||
| 1165 | printf("%3d ", array[i]); |
||
| 1166 | printf("\n"); |
||
| 1167 | } |
||
| 1168 | |||
| 1169 | /* |
||
| 1170 | ******************************************************************************* |
||
| 1171 | * * |
||
| 1172 | * EGTBPV() is used to display the PV for a known EGTB position. It simply * |
||
| 1173 | * makes moves, looks up the position to find the shortest mate, then it * |
||
| 1174 | * follows that PV. It appends a "!" to a move that is the only move to * |
||
| 1175 | * preserve the shortest path to mate (all other moves lead to longer mates * |
||
| 1176 | * or even draws.) * |
||
| 1177 | * * |
||
| 1178 | ******************************************************************************* |
||
| 1179 | */ |
||
| 1180 | #if !defined(NOEGTB) |
||
| 1181 | void EGTBPV(TREE * RESTRICT tree, int wtm) { |
||
| 1182 | int moves[1024], current[256]; |
||
| 1183 | uint64_t hk[1024], phk[1024]; |
||
| 1184 | char buffer[16384], *next; |
||
| 1185 | uint64_t pos[1024]; |
||
| 1186 | int value; |
||
| 1187 | int ply, i, j, nmoves, *last, t_move_number; |
||
| 1188 | int best = 0, bestmv = 0, optimal_mv = 0; |
||
| 1189 | int legal; |
||
| 1190 | |||
| 1191 | /* |
||
| 1192 | ************************************************************ |
||
| 1193 | * * |
||
| 1194 | * First, see if this is a known EGTB position. If not, * |
||
| 1195 | * we can bug out right now. * |
||
| 1196 | * * |
||
| 1197 | ************************************************************ |
||
| 1198 | */ |
||
| 1199 | if (!EGTB_setup) |
||
| 1200 | return; |
||
| 1201 | tree->status[1] = tree->status[0]; |
||
| 1202 | if (Castle(1, white) + Castle(1, white)) |
||
| 1203 | return; |
||
| 1204 | if (!EGTBProbe(tree, 1, wtm, &value)) |
||
| 1205 | return; |
||
| 1206 | t_move_number = move_number; |
||
| 1207 | if (display_options & 64) |
||
| 1208 | sprintf_s(buffer, sizeof (buffer), "%d.", move_number); // Pierre-Marie Baty -- use safe version |
||
| 1209 | else |
||
| 1210 | buffer[0] = 0; |
||
| 1211 | if ((display_options & 64) && !wtm) |
||
| 1212 | strcat_s(buffer, sizeof (buffer), " ..."); // Pierre-Marie Baty -- use safe version |
||
| 1213 | /* |
||
| 1214 | ************************************************************ |
||
| 1215 | * * |
||
| 1216 | * The rest is simple, but messy. Generate all moves, * |
||
| 1217 | * then find the move with the best egtb score and make it * |
||
| 1218 | * (note that if there is only one that is optimal, it is * |
||
| 1219 | * flagged as such). We then repeat this over and over * |
||
| 1220 | * until we reach the end, or until we repeat a move and * |
||
| 1221 | * can call it a repetition. * |
||
| 1222 | * * |
||
| 1223 | ************************************************************ |
||
| 1224 | */ |
||
| 1225 | for (ply = 1; ply < 1024; ply++) { |
||
| 1226 | pos[ply] = HashKey; |
||
| 1227 | last = GenerateCaptures(tree, 1, wtm, current); |
||
| 1228 | last = GenerateNoncaptures(tree, 1, wtm, last); |
||
| 1229 | nmoves = last - current; |
||
| 1230 | best = -MATE - 1; |
||
| 1231 | legal = 0; |
||
| 1232 | for (i = 0; i < nmoves; i++) { |
||
| 1233 | MakeMove(tree, 1, current[i], wtm); |
||
| 1234 | if (!Check(wtm)) { |
||
| 1235 | legal++; |
||
| 1236 | if (TotalAllPieces == 2 || EGTBProbe(tree, 2, Flip(wtm), &value)) { |
||
| 1237 | if (TotalAllPieces > 2) |
||
| 1238 | value = -value; |
||
| 1239 | else |
||
| 1240 | value = DrawScore(wtm); |
||
| 1241 | if (value > best) { |
||
| 1242 | best = value; |
||
| 1243 | bestmv = current[i]; |
||
| 1244 | optimal_mv = 1; |
||
| 1245 | } else if (value == best) |
||
| 1246 | optimal_mv = 0; |
||
| 1247 | } |
||
| 1248 | } |
||
| 1249 | UnmakeMove(tree, 1, current[i], wtm); |
||
| 1250 | } |
||
| 1251 | if (best > -MATE - 1) { |
||
| 1252 | moves[ply] = bestmv; |
||
| 1253 | if ((display_options & 64) && ply > 1 && wtm) |
||
| 1254 | sprintf(buffer + strlen(buffer), " %d.", t_move_number); |
||
| 1255 | sprintf(buffer + strlen(buffer), " %s", OutputMove(tree, bestmv, 1, |
||
| 1256 | wtm)); |
||
| 1257 | if (!strchr(buffer, '#') && legal > 1 && optimal_mv) |
||
| 1258 | strcat_s(buffer, sizeof (buffer), "!"); // Pierre-Marie Baty -- use safe version |
||
| 1259 | hk[ply] = HashKey; |
||
| 1260 | phk[ply] = PawnHashKey; |
||
| 1261 | MakeMove(tree, 1, bestmv, wtm); |
||
| 1262 | tree->status[1] = tree->status[2]; |
||
| 1263 | wtm = Flip(wtm); |
||
| 1264 | for (j = 2 - (ply & 1); j < ply; j += 2) |
||
| 1265 | if (pos[ply] == pos[j]) |
||
| 1266 | break; |
||
| 1267 | if (j < ply) |
||
| 1268 | break; |
||
| 1269 | if (wtm) |
||
| 1270 | t_move_number++; |
||
| 1271 | if (strchr(buffer, '#')) |
||
| 1272 | break; |
||
| 1273 | } else { |
||
| 1274 | ply--; |
||
| 1275 | break; |
||
| 1276 | } |
||
| 1277 | } |
||
| 1278 | nmoves = ply; |
||
| 1279 | for (; ply > 0; ply--) { |
||
| 1280 | wtm = Flip(wtm); |
||
| 1281 | tree->save_hash_key[1] = hk[ply]; |
||
| 1282 | tree->save_pawn_hash_key[1] = phk[ply]; |
||
| 1283 | UnmakeMove(tree, 1, moves[ply], wtm); |
||
| 1284 | tree->status[2] = tree->status[1]; |
||
| 1285 | } |
||
| 1286 | next = buffer; |
||
| 1287 | while (nmoves) { |
||
| 1288 | if ((int) strlen(next) > line_length) { // Pierre-Marie Baty -- added type cast |
||
| 1289 | int i; |
||
| 1290 | |||
| 1291 | for (i = 0; i < 16; i++) |
||
| 1292 | if (*(next + 64 + i) == ' ') |
||
| 1293 | break; |
||
| 1294 | *(next + 64 + i) = 0; |
||
| 1295 | printf("%s\n", next); |
||
| 1296 | next += 64 + i + 1; |
||
| 1297 | } else { |
||
| 1298 | printf("%s\n", next); |
||
| 1299 | break; |
||
| 1300 | } |
||
| 1301 | } |
||
| 1302 | } |
||
| 1303 | #endif |
||
| 1304 | /* |
||
| 1305 | ******************************************************************************* |
||
| 1306 | * * |
||
| 1307 | * DisplayChessMove() is a debugging function that displays a chess move in * |
||
| 1308 | * a very simple (non-algebraic) form. * |
||
| 1309 | * * |
||
| 1310 | ******************************************************************************* |
||
| 1311 | */ |
||
| 1312 | void DisplayChessMove(char *title, int move) { |
||
| 1313 | Print(4095, "%s piece=%d, from=%d, to=%d, captured=%d, promote=%d\n", |
||
| 1314 | title, Piece(move), From(move), To(move), Captured(move), |
||
| 1315 | Promote(move)); |
||
| 1316 | } |
||
| 1317 | |||
| 1318 | /* |
||
| 1319 | ******************************************************************************* |
||
| 1320 | * * |
||
| 1321 | * FormatPV() is used to display a PV during the search. It will also note * |
||
| 1322 | * when the PV was terminated by a hash table hit. * |
||
| 1323 | * * |
||
| 1324 | ******************************************************************************* |
||
| 1325 | */ |
||
| 1326 | char *FormatPV(TREE * RESTRICT tree, int wtm, PATH pv) { |
||
| 1327 | static char buffer[4096]; |
||
| 1328 | int i, t_move_number; |
||
| 1329 | |||
| 1330 | /* |
||
| 1331 | ************************************************************ |
||
| 1332 | * * |
||
| 1333 | * Initialize. * |
||
| 1334 | * * |
||
| 1335 | ************************************************************ |
||
| 1336 | */ |
||
| 1337 | t_move_number = move_number; |
||
| 1338 | if (display_options & 64) |
||
| 1339 | sprintf_s(buffer, sizeof (buffer), " %d.", move_number); // Pierre-Marie Baty -- use safe version |
||
| 1340 | else |
||
| 1341 | buffer[0] = 0; |
||
| 1342 | if ((display_options & 64) && !wtm) |
||
| 1343 | strcat_s(buffer, sizeof (buffer), " ..."); // Pierre-Marie Baty -- use safe version |
||
| 1344 | for (i = 1; i < (int) pv.pathl; i++) { |
||
| 1345 | if ((display_options & 64) && i > 1 && wtm) |
||
| 1346 | sprintf(buffer + strlen(buffer), " %d.", t_move_number); |
||
| 1347 | sprintf(buffer + strlen(buffer), " %s", OutputMove(tree, pv.path[i], i, |
||
| 1348 | wtm)); |
||
| 1349 | MakeMove(tree, i, pv.path[i], wtm); |
||
| 1350 | wtm = Flip(wtm); |
||
| 1351 | if (wtm) |
||
| 1352 | t_move_number++; |
||
| 1353 | } |
||
| 1354 | for (i = pv.pathl - 1; i > 0; i--) { |
||
| 1355 | wtm = Flip(wtm); |
||
| 1356 | UnmakeMove(tree, i, pv.path[i], wtm); |
||
| 1357 | } |
||
| 1358 | return buffer; |
||
| 1359 | } |
||
| 1360 | |||
| 1361 | /* last modified 02/26/14 */ |
||
| 1362 | /* |
||
| 1363 | ******************************************************************************* |
||
| 1364 | * * |
||
| 1365 | * GameOver() is used to determine if the game is over by rule. More * |
||
| 1366 | * specifically, after our move, the opponent has no legal move to play. He * |
||
| 1367 | * is either checkmated or stalemated, either of which is sufficient reason * |
||
| 1368 | * to terminate the game. * |
||
| 1369 | * * |
||
| 1370 | ******************************************************************************* |
||
| 1371 | */ |
||
| 1372 | int GameOver(int wtm) { |
||
| 1373 | int *mvp, *lastm, rmoves[256]; |
||
| 1374 | TREE *const tree = block[0]; |
||
| 1375 | int over = 1; |
||
| 1376 | |||
| 1377 | /* |
||
| 1378 | ************************************************************ |
||
| 1379 | * * |
||
| 1380 | * First, use GenerateMoves() to generate the set of * |
||
| 1381 | * legal moves from the root position. * |
||
| 1382 | * * |
||
| 1383 | ************************************************************ |
||
| 1384 | */ |
||
| 1385 | lastm = GenerateCaptures(tree, 1, wtm, rmoves); |
||
| 1386 | lastm = GenerateNoncaptures(tree, 1, wtm, lastm); |
||
| 1387 | /* |
||
| 1388 | ************************************************************ |
||
| 1389 | * * |
||
| 1390 | * Now make each move and determine if we are in check * |
||
| 1391 | * after each one. Any move that does not leave us in * |
||
| 1392 | * check is good enough to prove that the game is not yet * |
||
| 1393 | * officially over. * |
||
| 1394 | * * |
||
| 1395 | ************************************************************ |
||
| 1396 | */ |
||
| 1397 | for (mvp = rmoves; mvp < lastm; mvp++) { |
||
| 1398 | MakeMove(tree, 1, *mvp, wtm); |
||
| 1399 | if (!Check(wtm)) |
||
| 1400 | over = 0; |
||
| 1401 | UnmakeMove(tree, 1, *mvp, wtm); |
||
| 1402 | } |
||
| 1403 | /* |
||
| 1404 | ************************************************************ |
||
| 1405 | * * |
||
| 1406 | * If we did not make it thru the complete move list, we * |
||
| 1407 | * must have at least one legal move so the game is not * |
||
| 1408 | * over. return 0. Otherwise, we have no move and the * |
||
| 1409 | * game is over. We return 1 if this side is stalmated or * |
||
| 1410 | * we return 2 if this side is mated. * |
||
| 1411 | * * |
||
| 1412 | ************************************************************ |
||
| 1413 | */ |
||
| 1414 | if (!over) |
||
| 1415 | return 0; |
||
| 1416 | else if (!Check(wtm)) |
||
| 1417 | return 1; |
||
| 1418 | else |
||
| 1419 | return 2; |
||
| 1420 | } |
||
| 1421 | |||
| 1422 | /* |
||
| 1423 | ******************************************************************************* |
||
| 1424 | * * |
||
| 1425 | * ReadClock() is a procedure used to read the elapsed time. Since this * |
||
| 1426 | * varies from system to system, this procedure has several flavors to * |
||
| 1427 | * provide portability. * |
||
| 1428 | * * |
||
| 1429 | ******************************************************************************* |
||
| 1430 | */ |
||
| 1431 | unsigned int ReadClock(void) { |
||
| 1432 | #if defined(UNIX) |
||
| 1433 | struct timeval timeval; |
||
| 1434 | struct timezone timezone; |
||
| 1435 | #else |
||
| 1436 | // HANDLE hThread; |
||
| 1437 | // FILETIME ftCreate, ftExit, ftKernel, ftUser; // Pierre-Marie Baty -- unused variables |
||
| 1438 | // uint64_t tUser64; |
||
| 1439 | #endif |
||
| 1440 | #if defined(UNIX) |
||
| 1441 | gettimeofday(&timeval, &timezone); |
||
| 1442 | return timeval.tv_sec * 100 + (timeval.tv_usec / 10000); |
||
| 1443 | #else |
||
| 1444 | return (unsigned int) GetTickCount() / 10; |
||
| 1445 | #endif |
||
| 1446 | } |
||
| 1447 | |||
| 1448 | /* |
||
| 1449 | ******************************************************************************* |
||
| 1450 | * * |
||
| 1451 | * FindBlockID() converts a thread block pointer into an ID that is easier to* |
||
| 1452 | * understand when debugging. * |
||
| 1453 | * * |
||
| 1454 | ******************************************************************************* |
||
| 1455 | */ |
||
| 1456 | int FindBlockID(TREE * RESTRICT which) { |
||
| 1457 | int i; |
||
| 1458 | |||
| 1459 | for (i = 0; i < MAX_BLOCKS + 1; i++) |
||
| 1460 | if (which == block[i]) |
||
| 1461 | return i; |
||
| 1462 | return -1; |
||
| 1463 | } |
||
| 1464 | |||
| 1465 | /* |
||
| 1466 | ******************************************************************************* |
||
| 1467 | * * |
||
| 1468 | * InvalidPosition() is used to determine if the position just entered via a * |
||
| 1469 | * FEN-string or the "edit" command is legal. This includes the expected * |
||
| 1470 | * tests for too many pawns or pieces for one side, pawns on impossible * |
||
| 1471 | * squares, and the like. * |
||
| 1472 | * * |
||
| 1473 | ******************************************************************************* |
||
| 1474 | */ |
||
| 1475 | int InvalidPosition(TREE * RESTRICT tree) { |
||
| 1476 | int error = 0; |
||
| 1477 | int wp, wn, wb, wr, wq, bp, bn, bb, br, bq; |
||
| 1478 | |||
| 1479 | wp = PopCnt(Pawns(white)); |
||
| 1480 | wn = PopCnt(Knights(white)); |
||
| 1481 | wb = PopCnt(Bishops(white)); |
||
| 1482 | wr = PopCnt(Rooks(white)); |
||
| 1483 | wq = PopCnt(Queens(white)); |
||
| 1484 | bp = PopCnt(Pawns(black)); |
||
| 1485 | bn = PopCnt(Knights(black)); |
||
| 1486 | bb = PopCnt(Bishops(black)); |
||
| 1487 | br = PopCnt(Rooks(black)); |
||
| 1488 | bq = PopCnt(Queens(black)); |
||
| 1489 | if (wp > 8) { |
||
| 1490 | Print(4095, "illegal position, too many white pawns\n"); |
||
| 1491 | error = 1; |
||
| 1492 | } |
||
| 1493 | if (wp + wn > 10) { |
||
| 1494 | Print(4095, "illegal position, too many white knights\n"); |
||
| 1495 | error = 1; |
||
| 1496 | } |
||
| 1497 | if (wp + wb > 10) { |
||
| 1498 | Print(4095, "illegal position, too many white bishops\n"); |
||
| 1499 | error = 1; |
||
| 1500 | } |
||
| 1501 | if (wp + wr > 10) { |
||
| 1502 | Print(4095, "illegal position, too many white rooks\n"); |
||
| 1503 | error = 1; |
||
| 1504 | } |
||
| 1505 | if (wp + wq > 10) { |
||
| 1506 | Print(4095, "illegal position, too many white queens\n"); |
||
| 1507 | error = 1; |
||
| 1508 | } |
||
| 1509 | if (KingSQ(white) > 63) { |
||
| 1510 | Print(4095, "illegal position, no white king\n"); |
||
| 1511 | error = 1; |
||
| 1512 | } |
||
| 1513 | if (wp + wn + wb + wr + wq > 15) { |
||
| 1514 | Print(4095, "illegal position, too many white pieces\n"); |
||
| 1515 | error = 1; |
||
| 1516 | } |
||
| 1517 | if (Pawns(white) & (rank_mask[RANK1] | rank_mask[RANK8])) { |
||
| 1518 | Print(4095, "illegal position, white pawns on first/eighth rank(s)\n"); |
||
| 1519 | error = 1; |
||
| 1520 | } |
||
| 1521 | if (bp > 8) { |
||
| 1522 | Print(4095, "illegal position, too many black pawns\n"); |
||
| 1523 | error = 1; |
||
| 1524 | } |
||
| 1525 | if (bp + bn > 10) { |
||
| 1526 | Print(4095, "illegal position, too many black knights\n"); |
||
| 1527 | error = 1; |
||
| 1528 | } |
||
| 1529 | if (bp + bb > 10) { |
||
| 1530 | Print(4095, "illegal position, too many black bishops\n"); |
||
| 1531 | error = 1; |
||
| 1532 | } |
||
| 1533 | if (bp + br > 10) { |
||
| 1534 | Print(4095, "illegal position, too many black rooks\n"); |
||
| 1535 | error = 1; |
||
| 1536 | } |
||
| 1537 | if (bp + bq > 10) { |
||
| 1538 | Print(4095, "illegal position, too many black queens\n"); |
||
| 1539 | error = 1; |
||
| 1540 | } |
||
| 1541 | if (KingSQ(black) > 63) { |
||
| 1542 | Print(4095, "illegal position, no black king\n"); |
||
| 1543 | error = 1; |
||
| 1544 | } |
||
| 1545 | if (bp + bn + bb + br + bq > 15) { |
||
| 1546 | Print(4095, "illegal position, too many black pieces\n"); |
||
| 1547 | error = 1; |
||
| 1548 | } |
||
| 1549 | if (Pawns(black) & (rank_mask[RANK1] | rank_mask[RANK8])) { |
||
| 1550 | Print(4095, "illegal position, black pawns on first/eighth rank(s)\n"); |
||
| 1551 | error = 1; |
||
| 1552 | } |
||
| 1553 | if (error == 0 && Check(!game_wtm)) { |
||
| 1554 | Print(4095, "ERROR side not on move is in check!\n"); |
||
| 1555 | error = 1; |
||
| 1556 | } |
||
| 1557 | return error; |
||
| 1558 | } |
||
| 1559 | |||
| 1560 | /* |
||
| 1561 | ******************************************************************************* |
||
| 1562 | * * |
||
| 1563 | * KingPawnSquare() is used to initialize some of the passed pawn race * |
||
| 1564 | * tables used by Evaluate(). It simply answers the question "is the king * |
||
| 1565 | * in the square of the pawn so the pawn can't outrun it and promote?" * |
||
| 1566 | * * |
||
| 1567 | ******************************************************************************* |
||
| 1568 | */ |
||
| 1569 | int KingPawnSquare(int pawn, int king, int queen, int ptm) { |
||
| 1570 | int pdist, kdist; |
||
| 1571 | |||
| 1572 | pdist = Abs(Rank(pawn) - Rank(queen)) + !ptm; |
||
| 1573 | kdist = Distance(king, queen); |
||
| 1574 | return pdist >= kdist; |
||
| 1575 | } |
||
| 1576 | |||
| 1577 | /* last modified 02/26/14 */ |
||
| 1578 | /* |
||
| 1579 | ******************************************************************************* |
||
| 1580 | * * |
||
| 1581 | * NewGame() is used to initialize the chess position and timing controls to * |
||
| 1582 | * the setup needed to start a new game. * |
||
| 1583 | * * |
||
| 1584 | ******************************************************************************* |
||
| 1585 | */ |
||
| 1586 | void NewGame(int save) { |
||
| 1587 | static int save_book_selection_width = 5; |
||
| 1588 | static int save_kibitz = 0; |
||
| 1589 | static int save_resign = 0, save_resign_count = 0, save_draw_count = 0; |
||
| 1590 | static int save_learning = 0; |
||
| 1591 | static int save_learn = 0; |
||
| 1592 | static int save_accept_draws = 0; |
||
| 1593 | int id; |
||
| 1594 | TREE *const tree = block[0]; |
||
| 1595 | |||
| 1596 | new_game = 0; |
||
| 1597 | if (save) { |
||
| 1598 | save_book_selection_width = book_selection_width; |
||
| 1599 | save_kibitz = kibitz; |
||
| 1600 | save_resign = resign; |
||
| 1601 | save_resign_count = resign_count; |
||
| 1602 | save_draw_count = draw_count; |
||
| 1603 | save_learning = learning; |
||
| 1604 | save_learn = learn; |
||
| 1605 | save_accept_draws = accept_draws; |
||
| 1606 | } else { |
||
| 1607 | if (learn && moves_out_of_book) { |
||
| 1608 | learn_value = |
||
| 1609 | (crafty_is_white) ? last_search_value : -last_search_value; |
||
| 1610 | LearnBook(); |
||
| 1611 | } |
||
| 1612 | if (xboard) { |
||
| 1613 | printf("tellicsnoalias set 1 Crafty v%s (%d cpus)\n", version, Max(1, |
||
| 1614 | smp_max_threads)); |
||
| 1615 | } |
||
| 1616 | over = 0; |
||
| 1617 | moves_out_of_book = 0; |
||
| 1618 | learn_positions_count = 0; |
||
| 1619 | learn_value = 0; |
||
| 1620 | ponder_move = 0; |
||
| 1621 | last_search_value = 0; |
||
| 1622 | last_pv.pathd = 0; |
||
| 1623 | last_pv.pathl = 0; |
||
| 1624 | initial_position[0] = 0; // Pierre-Marie Baty -- use safe version |
||
| 1625 | InitializeChessBoard(tree); |
||
| 1626 | InitializeHashTables(); |
||
| 1627 | force = 0; |
||
| 1628 | books_file = normal_bs_file; |
||
| 1629 | draw_score[0] = 0; |
||
| 1630 | draw_score[1] = 0; |
||
| 1631 | game_wtm = 1; |
||
| 1632 | move_number = 1; |
||
| 1633 | tc_time_remaining[white] = tc_time; |
||
| 1634 | tc_time_remaining[black] = tc_time; |
||
| 1635 | tc_moves_remaining[white] = tc_moves; |
||
| 1636 | tc_moves_remaining[black] = tc_moves; |
||
| 1637 | if (move_actually_played) { |
||
| 1638 | if (log_file) { |
||
| 1639 | fclose(log_file); |
||
| 1640 | fclose(history_file); |
||
| 1641 | id = InitializeGetLogID(); |
||
| 1642 | sprintf_s(log_filename, sizeof (log_filename), "%s/log.%03d", log_path, id); // Pierre-Marie Baty -- use safe version |
||
| 1643 | sprintf_s(history_filename, sizeof (history_filename), "%s/game.%03d", log_path, id); // Pierre-Marie Baty -- use safe version |
||
| 1644 | fopen_s (&log_file, log_filename, "w"); // Pierre-Marie Baty -- use safe version |
||
| 1645 | fopen_s (&history_file, history_filename, "w+"); // Pierre-Marie Baty -- use safe version |
||
| 1646 | if (!history_file) { |
||
| 1647 | printf("ERROR, unable to open game history file, exiting\n"); |
||
| 1648 | CraftyExit(1); |
||
| 1649 | } |
||
| 1650 | } |
||
| 1651 | } |
||
| 1652 | move_actually_played = 0; |
||
| 1653 | book_selection_width = save_book_selection_width; |
||
| 1654 | kibitz = save_kibitz; |
||
| 1655 | resign = save_resign; |
||
| 1656 | resign_count = save_resign_count; |
||
| 1657 | resign_counter = 0; |
||
| 1658 | draw_count = save_draw_count; |
||
| 1659 | accept_draws = save_accept_draws; |
||
| 1660 | draw_counter = 0; |
||
| 1661 | usage_level = 0; |
||
| 1662 | learning = save_learning; |
||
| 1663 | learn = save_learn; |
||
| 1664 | predicted = 0; |
||
| 1665 | kibitz_depth = 0; |
||
| 1666 | tree->nodes_searched = 0; |
||
| 1667 | kibitz_text[0] = 0; |
||
| 1668 | } |
||
| 1669 | } |
||
| 1670 | |||
| 1671 | /* |
||
| 1672 | ******************************************************************************* |
||
| 1673 | * * |
||
| 1674 | * ParseTime() is used to parse a time value that could be entered as s.ss, * |
||
| 1675 | * mm:ss, or hh:mm:ss. It is converted to Crafty's internal 1/100th second * |
||
| 1676 | * time resolution. * |
||
| 1677 | * * |
||
| 1678 | ******************************************************************************* |
||
| 1679 | */ |
||
| 1680 | int ParseTime(char *string) { |
||
| 1681 | int time = 0; |
||
| 1682 | int minutes = 0; |
||
| 1683 | |||
| 1684 | while (*string) { |
||
| 1685 | switch (*string) { |
||
| 1686 | case '0': |
||
| 1687 | case '1': |
||
| 1688 | case '2': |
||
| 1689 | case '3': |
||
| 1690 | case '4': |
||
| 1691 | case '5': |
||
| 1692 | case '6': |
||
| 1693 | case '7': |
||
| 1694 | case '8': |
||
| 1695 | case '9': |
||
| 1696 | minutes = minutes * 10 + (*string) - '0'; |
||
| 1697 | break; |
||
| 1698 | case ':': |
||
| 1699 | time = time * 60 + minutes; |
||
| 1700 | minutes = 0; |
||
| 1701 | break; |
||
| 1702 | default: |
||
| 1703 | Print(4095, "illegal character in time, please re-enter\n"); |
||
| 1704 | break; |
||
| 1705 | } |
||
| 1706 | string++; |
||
| 1707 | } |
||
| 1708 | return time * 60 + minutes; |
||
| 1709 | } |
||
| 1710 | |||
| 1711 | /* |
||
| 1712 | ******************************************************************************* |
||
| 1713 | * * |
||
| 1714 | * Pass() was written by Tim Mann to handle the case where a position is set * |
||
| 1715 | * using a FEN string, and then black moves first. The game.nnn file was * |
||
| 1716 | * designed to start with a white move, so "pass" is now a "no-op" move for * |
||
| 1717 | * the side whose turn it is to move. * |
||
| 1718 | * * |
||
| 1719 | ******************************************************************************* |
||
| 1720 | */ |
||
| 1721 | void Pass(void) { |
||
| 1722 | char buffer[128]; |
||
| 1723 | const int halfmoves_done = 2 * (move_number - 1) + (1 - game_wtm); |
||
| 1724 | int prev_pass = 0; |
||
| 1725 | |||
| 1726 | /* Was previous move a pass? */ |
||
| 1727 | if (halfmoves_done > 0) { |
||
| 1728 | if (history_file) { |
||
| 1729 | fseek(history_file, (halfmoves_done - 1) * 10, SEEK_SET); |
||
| 1730 | if (fscanf_s(history_file, "%s", buffer, sizeof (buffer)) == 0 || |
||
| 1731 | strcmp(buffer, "pass") == 0) |
||
| 1732 | prev_pass = 1; |
||
| 1733 | } |
||
| 1734 | } |
||
| 1735 | if (prev_pass) { |
||
| 1736 | if (game_wtm) |
||
| 1737 | move_number--; |
||
| 1738 | } else { |
||
| 1739 | if (history_file) { |
||
| 1740 | fseek(history_file, halfmoves_done * 10, SEEK_SET); |
||
| 1741 | fprintf(history_file, "%9s\n", "pass"); |
||
| 1742 | } |
||
| 1743 | if (!game_wtm) |
||
| 1744 | move_number++; |
||
| 1745 | } |
||
| 1746 | game_wtm = Flip(game_wtm); |
||
| 1747 | } |
||
| 1748 | |||
| 1749 | /* |
||
| 1750 | ******************************************************************************* |
||
| 1751 | * * |
||
| 1752 | * Print() is the main output procedure. The first argument is a bitmask * |
||
| 1753 | * that identifies the type of output. If this argument is anded with the * |
||
| 1754 | * "display" control variable, and a non-zero result is produced, then the * |
||
| 1755 | * print is done, otherwise the print is skipped and we return (more details * |
||
| 1756 | * can be found in the display command comments in option.c). This also * |
||
| 1757 | * uses the "variable number of arguments" facility in ANSI C since the * |
||
| 1758 | * normal printf() function accepts a variable number of arguments. * |
||
| 1759 | * * |
||
| 1760 | * Print() also sends output to the log.nnn file automatically, so that it * |
||
| 1761 | * is recorded even if the above display control variable says "do not send * |
||
| 1762 | * this to stdout" * |
||
| 1763 | * * |
||
| 1764 | ******************************************************************************* |
||
| 1765 | */ |
||
| 1766 | void Print(int vb, char *fmt, ...) { |
||
| 1767 | va_list ap; |
||
| 1768 | |||
| 1769 | va_start(ap, fmt); |
||
| 1770 | if (vb & display_options) |
||
| 1771 | vprintf(fmt, ap); |
||
| 1772 | fflush(stdout); |
||
| 1773 | if (time_limit > -99 || tc_time_remaining[root_wtm] > 6000 || vb == 4095) { |
||
| 1774 | va_start(ap, fmt); |
||
| 1775 | if (log_file) |
||
| 1776 | vfprintf(log_file, fmt, ap); |
||
| 1777 | if (log_file) |
||
| 1778 | fflush(log_file); |
||
| 1779 | } |
||
| 1780 | va_end(ap); |
||
| 1781 | } |
||
| 1782 | |||
| 1783 | /* |
||
| 1784 | ******************************************************************************* |
||
| 1785 | * * |
||
| 1786 | * PrintKM() converts a binary value to a real K/M type value, rather than * |
||
| 1787 | * the more common K=1000, M=1000000 type output. This is used for info * |
||
| 1788 | * about the hash table sizes for one thing. * |
||
| 1789 | * * |
||
| 1790 | ******************************************************************************* |
||
| 1791 | */ |
||
| 1792 | char *PrintKM(size_t val, int realK) { |
||
| 1793 | static char buf[32]; |
||
| 1794 | |||
| 1795 | if (realK) { |
||
| 1796 | if (val >= 1 << 20 && !(val & ((1 << 20) - 1))) |
||
| 1797 | sprintf_s(buf, sizeof (buf), "%dM", (int) (val / (1 << 20))); // Pierre-Marie Baty -- use safe version |
||
| 1798 | else if (val >= 1 << 10) |
||
| 1799 | sprintf_s(buf, sizeof (buf), "%dK", (int) (val / (1 << 10))); // Pierre-Marie Baty -- use safe version |
||
| 1800 | else |
||
| 1801 | sprintf_s(buf, sizeof (buf), "%d", (int) val); // Pierre-Marie Baty -- use safe version |
||
| 1802 | return buf; |
||
| 1803 | } else { |
||
| 1804 | if (val >= 1000000 && !(val % 1000000)) |
||
| 1805 | sprintf_s(buf, sizeof (buf), "%dM", (int) (val / 1000000)); // Pierre-Marie Baty -- use safe version |
||
| 1806 | else if (val >= 1000) |
||
| 1807 | sprintf_s(buf, sizeof (buf), "%dK", (int) (val / 1000)); // Pierre-Marie Baty -- use safe version |
||
| 1808 | else |
||
| 1809 | sprintf_s(buf, sizeof (buf), "%d", (int) val); // Pierre-Marie Baty -- use safe version |
||
| 1810 | return buf; |
||
| 1811 | } |
||
| 1812 | } |
||
| 1813 | |||
| 1814 | /* |
||
| 1815 | ******************************************************************************* |
||
| 1816 | * * |
||
| 1817 | * A 32 bit random number generator. An implementation in C of the algorithm * |
||
| 1818 | * given by Knuth, the art of computer programming, vol. 2, pp. 26-27. We use * |
||
| 1819 | * e=32, so we have to evaluate y(n) = y(n - 24) + y(n - 55) mod 2^32, which * |
||
| 1820 | * is implicitly done by unsigned arithmetic. * |
||
| 1821 | * * |
||
| 1822 | ******************************************************************************* |
||
| 1823 | */ |
||
| 1824 | unsigned int Random32(void) { |
||
| 1825 | /* |
||
| 1826 | random numbers from Mathematica 2.0. |
||
| 1827 | SeedRandom = 1; |
||
| 1828 | Table[Random[Integer, {0, 2^32 - 1}] |
||
| 1829 | */ |
||
| 1830 | static const uint64_t x[55] = { |
||
| 1831 | 1410651636UL, 3012776752UL, 3497475623UL, 2892145026UL, 1571949714UL, |
||
| 1832 | 3253082284UL, 3489895018UL, 387949491UL, 2597396737UL, 1981903553UL, |
||
| 1833 | 3160251843UL, 129444464UL, 1851443344UL, 4156445905UL, 224604922UL, |
||
| 1834 | 1455067070UL, 3953493484UL, 1460937157UL, 2528362617UL, 317430674UL, |
||
| 1835 | 3229354360UL, 117491133UL, 832845075UL, 1961600170UL, 1321557429UL, |
||
| 1836 | 747750121UL, 545747446UL, 810476036UL, 503334515UL, 4088144633UL, |
||
| 1837 | 2824216555UL, 3738252341UL, 3493754131UL, 3672533954UL, 29494241UL, |
||
| 1838 | 1180928407UL, 4213624418UL, 33062851UL, 3221315737UL, 1145213552UL, |
||
| 1839 | 2957984897UL, 4078668503UL, 2262661702UL, 65478801UL, 2527208841UL, |
||
| 1840 | 1960622036UL, 315685891UL, 1196037864UL, 804614524UL, 1421733266UL, |
||
| 1841 | 2017105031UL, 3882325900UL, 810735053UL, 384606609UL, 2393861397UL |
||
| 1842 | }; |
||
| 1843 | static int init = 1; |
||
| 1844 | static uint64_t y[55]; |
||
| 1845 | static int j, k; |
||
| 1846 | uint64_t ul; |
||
| 1847 | |||
| 1848 | if (init) { |
||
| 1849 | int i; |
||
| 1850 | |||
| 1851 | init = 0; |
||
| 1852 | for (i = 0; i < 55; i++) |
||
| 1853 | y[i] = x[i]; |
||
| 1854 | j = 24 - 1; |
||
| 1855 | k = 55 - 1; |
||
| 1856 | } |
||
| 1857 | ul = (y[k] += y[j]); |
||
| 1858 | if (--j < 0) |
||
| 1859 | j = 55 - 1; |
||
| 1860 | if (--k < 0) |
||
| 1861 | k = 55 - 1; |
||
| 1862 | return (unsigned int) ul; |
||
| 1863 | } |
||
| 1864 | |||
| 1865 | /* |
||
| 1866 | ******************************************************************************* |
||
| 1867 | * * |
||
| 1868 | * Random64() uses two calls to Random32() and then concatenates the two * |
||
| 1869 | * values into one 64 bit random number, used for hash signature updates on * |
||
| 1870 | * the Zobrist hash signatures. * |
||
| 1871 | * * |
||
| 1872 | ******************************************************************************* |
||
| 1873 | */ |
||
| 1874 | uint64_t Random64(void) { |
||
| 1875 | uint64_t result; |
||
| 1876 | unsigned int r1, r2; |
||
| 1877 | |||
| 1878 | r1 = Random32(); |
||
| 1879 | r2 = Random32(); |
||
| 1880 | result = r1 | (uint64_t) r2 << 32; |
||
| 1881 | return result; |
||
| 1882 | } |
||
| 1883 | |||
| 1884 | /* |
||
| 1885 | ******************************************************************************* |
||
| 1886 | * * |
||
| 1887 | * Read() copies data from the command_buffer into a local buffer, and then * |
||
| 1888 | * uses ReadParse to break this command up into tokens for processing. * |
||
| 1889 | * * |
||
| 1890 | ******************************************************************************* |
||
| 1891 | */ |
||
| 1892 | int Read(int wait, char *buffer, size_t buffer_size) { |
||
| 1893 | char *eol, *ret, readdata; |
||
| 1894 | |||
| 1895 | *buffer = 0; |
||
| 1896 | /* |
||
| 1897 | case 1: We have a complete command line, with terminating |
||
| 1898 | N/L character in the buffer. We can simply extract it from |
||
| 1899 | the I/O buffer, parse it and return. |
||
| 1900 | */ |
||
| 1901 | if (strchr(cmd_buffer, '\n')); |
||
| 1902 | /* |
||
| 1903 | case 2: The buffer does not contain a complete line. If we |
||
| 1904 | were asked to not wait for a complete command, then we first |
||
| 1905 | see if I/O is possible, and if so, read in what is available. |
||
| 1906 | If that includes a N/L, then we are ready to parse and return. |
||
| 1907 | If not, we return indicating no input available just yet. |
||
| 1908 | */ |
||
| 1909 | else if (!wait) { |
||
| 1910 | if (CheckInput()) { |
||
| 1911 | readdata = ReadInput(); |
||
| 1912 | if (!strchr(cmd_buffer, '\n')) |
||
| 1913 | return 0; |
||
| 1914 | if (!readdata) |
||
| 1915 | return -1; |
||
| 1916 | } else |
||
| 1917 | return 0; |
||
| 1918 | } |
||
| 1919 | /* |
||
| 1920 | case 3: The buffer does not contain a complete line, but we |
||
| 1921 | were asked to wait until a complete command is entered. So we |
||
| 1922 | hang by doing a ReadInput() and continue doing so until we get |
||
| 1923 | a N/L character in the buffer. Then we parse and return. |
||
| 1924 | */ |
||
| 1925 | else |
||
| 1926 | while (!strchr(cmd_buffer, '\n')) { |
||
| 1927 | readdata = ReadInput(); |
||
| 1928 | if (!readdata) |
||
| 1929 | return -1; |
||
| 1930 | } |
||
| 1931 | eol = strchr(cmd_buffer, '\n'); |
||
| 1932 | *eol = 0; |
||
| 1933 | ret = strchr(cmd_buffer, '\r'); |
||
| 1934 | if (ret) |
||
| 1935 | *ret = ' '; |
||
| 1936 | strcpy_s(buffer, buffer_size, cmd_buffer); // Pierre-Marie Baty -- use safe version |
||
| 1937 | memmove(cmd_buffer, eol + 1, strlen(eol + 1) + 1); |
||
| 1938 | return 1; |
||
| 1939 | } |
||
| 1940 | |||
| 1941 | /* |
||
| 1942 | ******************************************************************************* |
||
| 1943 | * * |
||
| 1944 | * ReadClear() clears the input buffer when input_stream is being switched to* |
||
| 1945 | * a file, since we have info buffered up from a different input stream. * |
||
| 1946 | * * |
||
| 1947 | ******************************************************************************* |
||
| 1948 | */ |
||
| 1949 | void ReadClear() { |
||
| 1950 | cmd_buffer[0] = 0; |
||
| 1951 | } |
||
| 1952 | |||
| 1953 | /* |
||
| 1954 | ******************************************************************************* |
||
| 1955 | * * |
||
| 1956 | * ReadParse() takes one complete command-line, and breaks it up into tokens.* |
||
| 1957 | * common delimiters are used, such as " ", ",", "/" and ";", any of which * |
||
| 1958 | * delimit fields. * |
||
| 1959 | * * |
||
| 1960 | ******************************************************************************* |
||
| 1961 | */ |
||
| 1962 | int ReadParse(char *buffer, char *args[], char *delims) { |
||
| 1963 | char *next, tbuffer[4096]; |
||
| 1964 | int nargs; |
||
| 1965 | |||
| 1966 | strcpy_s(tbuffer, sizeof (tbuffer), buffer); // Pierre-Marie Baty -- use safe version |
||
| 1967 | for (nargs = 0; nargs < 512; nargs++) |
||
| 1968 | *(args[nargs]) = 0; |
||
| 1969 | next = strtok(tbuffer, delims); |
||
| 1970 | if (!next) |
||
| 1971 | return 0; |
||
| 1972 | if (strlen(next) > 255) |
||
| 1973 | Print(4095, "ERROR, ignoring token %s, max allowable len = 255\n", next); |
||
| 1974 | else |
||
| 1975 | strcpy(args[0], next); |
||
| 1976 | for (nargs = 1; nargs < 512; nargs++) { |
||
| 1977 | next = strtok(0, delims); |
||
| 1978 | if (!next) |
||
| 1979 | break; |
||
| 1980 | if (strlen(next) > 255) |
||
| 1981 | Print(4095, "ERROR, ignoring token %s, max allowable len = 255\n", |
||
| 1982 | next); |
||
| 1983 | else |
||
| 1984 | strcpy(args[nargs], next); |
||
| 1985 | } |
||
| 1986 | return nargs; |
||
| 1987 | } |
||
| 1988 | |||
| 1989 | /* |
||
| 1990 | ******************************************************************************* |
||
| 1991 | * * |
||
| 1992 | * ReadInput() reads data from the input_stream, and buffers this into the * |
||
| 1993 | * command_buffer for later processing. * |
||
| 1994 | * * |
||
| 1995 | ******************************************************************************* |
||
| 1996 | */ |
||
| 1997 | int ReadInput(void) { |
||
| 1998 | char buffer[4096], *end; |
||
| 1999 | int bytes; |
||
| 2000 | |||
| 2001 | do |
||
| 2002 | bytes = _read(_fileno(input_stream), buffer, 2048); // Pierre-Marie Baty -- use ISO C++ conformant names |
||
| 2003 | while (bytes < 0 && errno == EINTR); |
||
| 2004 | if (bytes == 0) { |
||
| 2005 | if (input_stream != stdin) |
||
| 2006 | fclose(input_stream); |
||
| 2007 | input_stream = stdin; |
||
| 2008 | return 0; |
||
| 2009 | } else if (bytes < 0) { |
||
| 2010 | Print(4095, "ERROR! input I/O stream is unreadable, exiting.\n"); |
||
| 2011 | CraftyExit(1); |
||
| 2012 | } |
||
| 2013 | end = cmd_buffer + strlen(cmd_buffer); |
||
| 2014 | memcpy(end, buffer, bytes); |
||
| 2015 | *(end + bytes) = 0; |
||
| 2016 | return 1; |
||
| 2017 | } |
||
| 2018 | |||
| 2019 | /* |
||
| 2020 | ******************************************************************************* |
||
| 2021 | * * |
||
| 2022 | * ReadChessMove() is used to read a move from an input file. The main issue* |
||
| 2023 | * is to skip over "trash" like move numbers, times, comments, and so forth, * |
||
| 2024 | * and find the next actual move. * |
||
| 2025 | * * |
||
| 2026 | ******************************************************************************* |
||
| 2027 | */ |
||
| 2028 | int ReadChessMove(TREE * RESTRICT tree, FILE * input, int wtm, int one_move) { |
||
| 2029 | static char text[128]; |
||
| 2030 | char *tmove; |
||
| 2031 | int move = 0, status; |
||
| 2032 | |||
| 2033 | while (move == 0) { |
||
| 2034 | status = fscanf(input, "%s", text); |
||
| 2035 | if (status <= 0) |
||
| 2036 | return -1; |
||
| 2037 | if (strcmp(text, "0-0") && strcmp(text, "0-0-0")) |
||
| 2038 | tmove = text + strspn(text, "0123456789."); |
||
| 2039 | else |
||
| 2040 | tmove = text; |
||
| 2041 | if (((tmove[0] >= 'a' && tmove[0] <= 'z') || (tmove[0] >= 'A' && |
||
| 2042 | tmove[0] <= 'Z')) || !strcmp(tmove, "0-0") |
||
| 2043 | || !strcmp(tmove, "0-0-0")) { |
||
| 2044 | if (!strcmp(tmove, "exit")) |
||
| 2045 | return -1; |
||
| 2046 | move = InputMove(tree, tmove, 0, wtm, 1, 0); |
||
| 2047 | } |
||
| 2048 | if (one_move) |
||
| 2049 | break; |
||
| 2050 | } |
||
| 2051 | return move; |
||
| 2052 | } |
||
| 2053 | |||
| 2054 | /* |
||
| 2055 | ******************************************************************************* |
||
| 2056 | * * |
||
| 2057 | * ReadNextMove() is used to take a text chess move from a file, and see if * |
||
| 2058 | * if is legal, skipping a sometimes embedded move number (1.e4 for example) * |
||
| 2059 | * to make PGN import easier. * |
||
| 2060 | * * |
||
| 2061 | ******************************************************************************* |
||
| 2062 | */ |
||
| 2063 | int ReadNextMove(TREE * RESTRICT tree, char *text, int ply, int wtm) { |
||
| 2064 | char *tmove; |
||
| 2065 | int move = 0; |
||
| 2066 | |||
| 2067 | if (strcmp(text, "0-0") && strcmp(text, "0-0-0")) |
||
| 2068 | tmove = text + strspn(text, "0123456789./-"); |
||
| 2069 | else |
||
| 2070 | tmove = text; |
||
| 2071 | if (((tmove[0] >= 'a' && tmove[0] <= 'z') || (tmove[0] >= 'A' && |
||
| 2072 | tmove[0] <= 'Z')) || !strcmp(tmove, "0-0") |
||
| 2073 | || !strcmp(tmove, "0-0-0")) { |
||
| 2074 | if (!strcmp(tmove, "exit")) |
||
| 2075 | return -1; |
||
| 2076 | move = InputMove(tree, tmove, ply, wtm, 1, 0); |
||
| 2077 | } |
||
| 2078 | return move; |
||
| 2079 | } |
||
| 2080 | |||
| 2081 | /* |
||
| 2082 | ******************************************************************************* |
||
| 2083 | * * |
||
| 2084 | * This routine reads a move from a PGN file to build an opening book or for * |
||
| 2085 | * annotating. It returns a 1 if a header is read, it returns a 0 if a move * |
||
| 2086 | * is read, and returns a -1 on end of file. It counts lines and this * |
||
| 2087 | * counter can be accessed by calling this function with a non-zero second * |
||
| 2088 | * formal parameter. * |
||
| 2089 | * * |
||
| 2090 | ******************************************************************************* |
||
| 2091 | */ |
||
| 2092 | int ReadPGN(FILE * input, int option) { |
||
| 2093 | static int data = 0, lines_read = 0; |
||
| 2094 | static char input_buffer[4096]; |
||
| 2095 | char *eof, analysis_move[64]; |
||
| 2096 | int braces = 0, parens = 0, brackets = 0, analysis = 0, last_good_line; |
||
| 2097 | |||
| 2098 | /* |
||
| 2099 | ************************************************************ |
||
| 2100 | * * |
||
| 2101 | * If the line counter is being requested, return it with * |
||
| 2102 | * no other changes being made. If "purge" is true, clear * |
||
| 2103 | * the current input buffer. * |
||
| 2104 | * * |
||
| 2105 | ************************************************************ |
||
| 2106 | */ |
||
| 2107 | pgn_suggested_percent = 0; |
||
| 2108 | if (!input) { |
||
| 2109 | lines_read = 0; |
||
| 2110 | data = 0; |
||
| 2111 | return 0; |
||
| 2112 | } |
||
| 2113 | if (option == -1) |
||
| 2114 | data = 0; |
||
| 2115 | if (option == -2) |
||
| 2116 | return lines_read; |
||
| 2117 | /* |
||
| 2118 | ************************************************************ |
||
| 2119 | * * |
||
| 2120 | * If we don't have any data in the buffer, the first step * |
||
| 2121 | * is to read the next line. * |
||
| 2122 | * * |
||
| 2123 | ************************************************************ |
||
| 2124 | */ |
||
| 2125 | while (1) { |
||
| 2126 | if (!data) { |
||
| 2127 | eof = fgets(input_buffer, 4096, input); |
||
| 2128 | if (!eof) |
||
| 2129 | return -1; |
||
| 2130 | if (strchr(input_buffer, '\n')) |
||
| 2131 | *strchr(input_buffer, '\n') = 0; |
||
| 2132 | if (strchr(input_buffer, '\r')) |
||
| 2133 | *strchr(input_buffer, '\r') = ' '; |
||
| 2134 | lines_read++; |
||
| 2135 | buffer[0] = 0; |
||
| 2136 | sscanf(input_buffer, "%s", buffer); |
||
| 2137 | if (buffer[0] == '[') |
||
| 2138 | do { |
||
| 2139 | char *bracket1, *bracket2, value[128]; |
||
| 2140 | |||
| 2141 | strcpy(buffer, input_buffer); |
||
| 2142 | bracket1 = strchr(input_buffer, '\"'); |
||
| 2143 | if (bracket1 == 0) |
||
| 2144 | return 1; |
||
| 2145 | bracket2 = strchr(bracket1 + 1, '\"'); |
||
| 2146 | if (bracket2 == 0) |
||
| 2147 | return 1; |
||
| 2148 | *bracket1 = 0; |
||
| 2149 | *bracket2 = 0; |
||
| 2150 | strcpy(value, bracket1 + 1); |
||
| 2151 | if (strstr(input_buffer, "Event")) |
||
| 2152 | strcpy(pgn_event, value); |
||
| 2153 | else if (strstr(input_buffer, "Site")) |
||
| 2154 | strcpy(pgn_site, value); |
||
| 2155 | else if (strstr(input_buffer, "Round")) |
||
| 2156 | strcpy(pgn_round, value); |
||
| 2157 | else if (strstr(input_buffer, "Date")) |
||
| 2158 | strcpy(pgn_date, value); |
||
| 2159 | else if (strstr(input_buffer, "WhiteElo")) |
||
| 2160 | strcpy(pgn_white_elo, value); |
||
| 2161 | else if (strstr(input_buffer, "White")) |
||
| 2162 | strcpy(pgn_white, value); |
||
| 2163 | else if (strstr(input_buffer, "BlackElo")) |
||
| 2164 | strcpy(pgn_black_elo, value); |
||
| 2165 | else if (strstr(input_buffer, "Black")) |
||
| 2166 | strcpy(pgn_black, value); |
||
| 2167 | else if (strstr(input_buffer, "Result")) |
||
| 2168 | strcpy(pgn_result, value); |
||
| 2169 | else if (strstr(input_buffer, "FEN")) { |
||
| 2170 | sprintf_s(buffer, sizeof (buffer), "setboard %s", value); // Pierre-Marie Baty -- use safe version |
||
| 2171 | (void) Option(block[0]); |
||
| 2172 | continue; |
||
| 2173 | } |
||
| 2174 | return 1; |
||
| 2175 | } while (0); |
||
| 2176 | data = 1; |
||
| 2177 | } |
||
| 2178 | /* |
||
| 2179 | ************************************************************ |
||
| 2180 | * * |
||
| 2181 | * If we already have data in the buffer, it is just a * |
||
| 2182 | * matter of extracting the next move and returning it to * |
||
| 2183 | * the caller. If the buffer is empty, another line has * |
||
| 2184 | * to be read in. * |
||
| 2185 | * * |
||
| 2186 | ************************************************************ |
||
| 2187 | */ |
||
| 2188 | else { |
||
| 2189 | buffer[0] = 0; |
||
| 2190 | sscanf(input_buffer, "%s", buffer); |
||
| 2191 | if (strlen(buffer) == 0) { |
||
| 2192 | data = 0; |
||
| 2193 | continue; |
||
| 2194 | } else { |
||
| 2195 | char *skip; |
||
| 2196 | |||
| 2197 | skip = strstr(input_buffer, buffer) + strlen(buffer); |
||
| 2198 | if (skip) |
||
| 2199 | memmove(input_buffer, skip, strlen(skip) + 1); |
||
| 2200 | } |
||
| 2201 | /* |
||
| 2202 | ************************************************************ |
||
| 2203 | * * |
||
| 2204 | * This skips over nested {} or () characters and finds the* |
||
| 2205 | * 'mate', before returning any more moves. It also stops * |
||
| 2206 | * if a PGN header is encountered, probably due to an * |
||
| 2207 | * incorrectly bracketed analysis variation. * |
||
| 2208 | * * |
||
| 2209 | ************************************************************ |
||
| 2210 | */ |
||
| 2211 | last_good_line = lines_read; |
||
| 2212 | analysis_move[0] = 0; |
||
| 2213 | if (strchr(buffer, '{') || strchr(buffer, '(')) |
||
| 2214 | while (1) { |
||
| 2215 | char *skip, *ch; |
||
| 2216 | |||
| 2217 | analysis = 1; |
||
| 2218 | while ((ch = strpbrk(buffer, "(){}[]"))) { |
||
| 2219 | if (*ch == '(') { |
||
| 2220 | *strchr(buffer, '(') = ' '; |
||
| 2221 | if (!braces) |
||
| 2222 | parens++; |
||
| 2223 | } |
||
| 2224 | if (*ch == ')') { |
||
| 2225 | *strchr(buffer, ')') = ' '; |
||
| 2226 | if (!braces) |
||
| 2227 | parens--; |
||
| 2228 | } |
||
| 2229 | if (*ch == '{') { |
||
| 2230 | *strchr(buffer, '{') = ' '; |
||
| 2231 | braces++; |
||
| 2232 | } |
||
| 2233 | if (*ch == '}') { |
||
| 2234 | *strchr(buffer, '}') = ' '; |
||
| 2235 | braces--; |
||
| 2236 | } |
||
| 2237 | if (*ch == '[') { |
||
| 2238 | *strchr(buffer, '[') = ' '; |
||
| 2239 | if (!braces) |
||
| 2240 | brackets++; |
||
| 2241 | } |
||
| 2242 | if (*ch == ']') { |
||
| 2243 | *strchr(buffer, ']') = ' '; |
||
| 2244 | if (!braces) |
||
| 2245 | brackets--; |
||
| 2246 | } |
||
| 2247 | } |
||
| 2248 | if (analysis && analysis_move[0] == 0) { |
||
| 2249 | if (strspn(buffer, " ") != strlen(buffer)) { |
||
| 2250 | char *tmove = analysis_move; |
||
| 2251 | |||
| 2252 | sscanf(buffer, "%64s", analysis_move); |
||
| 2253 | strcpy(buffer, analysis_move); |
||
| 2254 | if (strcmp(buffer, "0-0") && strcmp(buffer, "0-0-0")) |
||
| 2255 | tmove = buffer + strspn(buffer, "0123456789."); |
||
| 2256 | else |
||
| 2257 | tmove = buffer; |
||
| 2258 | if ((tmove[0] >= 'a' && tmove[0] <= 'z') || (tmove[0] >= 'A' && |
||
| 2259 | tmove[0] <= 'Z') || !strcmp(tmove, "0-0") |
||
| 2260 | || !strcmp(tmove, "0-0-0")) |
||
| 2261 | strcpy(analysis_move, buffer); |
||
| 2262 | else |
||
| 2263 | analysis_move[0] = 0; |
||
| 2264 | } |
||
| 2265 | } |
||
| 2266 | if (parens == 0 && braces == 0 && brackets == 0) |
||
| 2267 | break; |
||
| 2268 | buffer[0] = 0; |
||
| 2269 | sscanf(input_buffer, "%s", buffer); |
||
| 2270 | if (strlen(buffer) == 0) { |
||
| 2271 | eof = fgets(input_buffer, 4096, input); |
||
| 2272 | if (!eof) { |
||
| 2273 | parens = 0; |
||
| 2274 | braces = 0; |
||
| 2275 | brackets = 0; |
||
| 2276 | return -1; |
||
| 2277 | } |
||
| 2278 | if (strchr(input_buffer, '\n')) |
||
| 2279 | *strchr(input_buffer, '\n') = 0; |
||
| 2280 | if (strchr(input_buffer, '\r')) |
||
| 2281 | *strchr(input_buffer, '\r') = ' '; |
||
| 2282 | lines_read++; |
||
| 2283 | if (lines_read - last_good_line >= 100) { |
||
| 2284 | parens = 0; |
||
| 2285 | braces = 0; |
||
| 2286 | brackets = 0; |
||
| 2287 | Print(4095, |
||
| 2288 | "ERROR. comment spans over 100 lines, starting at line %d\n", |
||
| 2289 | last_good_line); |
||
| 2290 | break; |
||
| 2291 | } |
||
| 2292 | } |
||
| 2293 | skip = strstr(input_buffer, buffer) + strlen(buffer); |
||
| 2294 | memmove(input_buffer, skip, strlen(skip) + 1); |
||
| 2295 | } else { |
||
| 2296 | int skip; |
||
| 2297 | |||
| 2298 | if ((skip = strspn(buffer, "0123456789."))) { |
||
| 2299 | if (skip > 1) |
||
| 2300 | memmove(buffer, buffer + skip, strlen(buffer + skip) + 1); |
||
| 2301 | } |
||
| 2302 | if (isalpha(buffer[0]) || strchr(buffer, '-')) { |
||
| 2303 | char *first, *last, *percent; |
||
| 2304 | |||
| 2305 | first = input_buffer + strspn(input_buffer, " "); |
||
| 2306 | if (first == 0 || *first != '{') |
||
| 2307 | return 0; |
||
| 2308 | last = strchr(input_buffer, '}'); |
||
| 2309 | if (last == 0) |
||
| 2310 | return 0; |
||
| 2311 | percent = strstr(first, "play"); |
||
| 2312 | if (percent == 0) |
||
| 2313 | return 0; |
||
| 2314 | pgn_suggested_percent = |
||
| 2315 | atoi(percent + 4 + strspn(percent + 4, " ")); |
||
| 2316 | return 0; |
||
| 2317 | } |
||
| 2318 | } |
||
| 2319 | if (analysis_move[0] && option == 1) { |
||
| 2320 | strcpy(buffer, analysis_move); |
||
| 2321 | return 2; |
||
| 2322 | } |
||
| 2323 | } |
||
| 2324 | } |
||
| 2325 | } |
||
| 2326 | |||
| 2327 | /* |
||
| 2328 | ******************************************************************************* |
||
| 2329 | * * |
||
| 2330 | * RestoreGame() resets the position to the beginning of the game, and then * |
||
| 2331 | * reads in the game.nnn history file to set the position up so that the game* |
||
| 2332 | * position matches the position at the end of the history file. * |
||
| 2333 | * * |
||
| 2334 | ******************************************************************************* |
||
| 2335 | */ |
||
| 2336 | void RestoreGame(void) { |
||
| 2337 | int i, move; |
||
| 2338 | char cmd[16]; |
||
| 2339 | |||
| 2340 | if (!history_file) |
||
| 2341 | return; |
||
| 2342 | game_wtm = 1; |
||
| 2343 | InitializeChessBoard(block[0]); |
||
| 2344 | for (i = 0; i < 500; i++) { |
||
| 2345 | fseek(history_file, i * 10, SEEK_SET); |
||
| 2346 | strcpy(cmd, ""); |
||
| 2347 | fscanf(history_file, "%s", cmd); |
||
| 2348 | if (strcmp(cmd, "pass")) { |
||
| 2349 | move = InputMove(block[0], cmd, 0, game_wtm, 1, 0); |
||
| 2350 | if (move) |
||
| 2351 | MakeMoveRoot(block[0], move, game_wtm); |
||
| 2352 | else |
||
| 2353 | break; |
||
| 2354 | } |
||
| 2355 | game_wtm = Flip(game_wtm); |
||
| 2356 | } |
||
| 2357 | } |
||
| 2358 | |||
| 2359 | /* |
||
| 2360 | ******************************************************************************* |
||
| 2361 | * * |
||
| 2362 | * Kibitz() is used to whisper/kibitz information to a chess server. It has * |
||
| 2363 | * to handle the xboard whisper/kibitz interface. * |
||
| 2364 | * * |
||
| 2365 | ******************************************************************************* |
||
| 2366 | */ |
||
| 2367 | void Kibitz(int level, int wtm, int depth, int time, int value, |
||
| 2368 | uint64_t nodes, int ip, int tb_hits, char *pv) { |
||
| 2369 | int nps; |
||
| 2370 | |||
| 2371 | nps = (int) ((time) ? 100 * nodes / (uint64_t) time : nodes); |
||
| 2372 | if (!puzzling) { |
||
| 2373 | char prefix[128]; |
||
| 2374 | |||
| 2375 | if (!(kibitz & 16)) |
||
| 2376 | sprintf_s(prefix, sizeof (prefix), "kibitz"); // Pierre-Marie Baty -- use safe version |
||
| 2377 | else |
||
| 2378 | sprintf_s(prefix, sizeof (prefix), "whisper"); // Pierre-Marie Baty -- use safe version |
||
| 2379 | switch (level) { |
||
| 2380 | case 1: |
||
| 2381 | if ((kibitz & 15) >= 1) { |
||
| 2382 | if (value > 0) { |
||
| 2383 | printf("%s mate in %d moves.\n\n", prefix, value); |
||
| 2384 | } |
||
| 2385 | if (value < 0) { |
||
| 2386 | printf("%s mated in %d moves.\n\n", prefix, -value); |
||
| 2387 | } |
||
| 2388 | } |
||
| 2389 | break; |
||
| 2390 | case 2: |
||
| 2391 | if ((kibitz & 15) >= 2) { |
||
| 2392 | printf("%s ply=%d; eval=%s; nps=%s; time=%s(%d%%); egtb=%d\n", |
||
| 2393 | prefix, depth, DisplayEvaluationKibitz(value, wtm), |
||
| 2394 | DisplayKMB(nps), DisplayTimeKibitz(time), ip, tb_hits); |
||
| 2395 | } |
||
| 2396 | case 3: |
||
| 2397 | if ((kibitz & 15) >= 3 && (nodes > 5000 || level == 2)) { |
||
| 2398 | printf("%s %s\n", prefix, pv); |
||
| 2399 | } |
||
| 2400 | break; |
||
| 2401 | case 4: |
||
| 2402 | if ((kibitz & 15) >= 4) { |
||
| 2403 | printf("%s %s\n", prefix, pv); |
||
| 2404 | } |
||
| 2405 | break; |
||
| 2406 | case 5: |
||
| 2407 | if ((kibitz & 15) >= 5 && nodes > 5000) { |
||
| 2408 | printf("%s d%d-> %s/s %s(%d%%) %s %s ", prefix, depth, |
||
| 2409 | DisplayKMB(nps), DisplayTimeKibitz(time), ip, |
||
| 2410 | DisplayEvaluationKibitz(value, wtm), pv); |
||
| 2411 | if (tb_hits) |
||
| 2412 | printf("egtb=%d", tb_hits); |
||
| 2413 | printf("\n"); |
||
| 2414 | } |
||
| 2415 | break; |
||
| 2416 | case 6: |
||
| 2417 | if ((kibitz & 15) >= 6 && nodes > 5000) { |
||
| 2418 | if (wtm) |
||
| 2419 | printf("%s d%d+ %s/s %s(%d%%) >(%s) %s <re-searching>\n", prefix, |
||
| 2420 | depth, DisplayKMB(nps), DisplayTimeKibitz(time), ip, |
||
| 2421 | DisplayEvaluationKibitz(value, wtm), pv); |
||
| 2422 | else |
||
| 2423 | printf("%s d%d+ %s/s %s(%d%%) <(%s) %s <re-searching>\n", prefix, |
||
| 2424 | depth, DisplayKMB(nps), DisplayTimeKibitz(time), ip, |
||
| 2425 | DisplayEvaluationKibitz(value, wtm), pv); |
||
| 2426 | } |
||
| 2427 | break; |
||
| 2428 | } |
||
| 2429 | value = (wtm) ? value : -value; |
||
| 2430 | if (post && level > 1) { |
||
| 2431 | if (strstr(pv, "book")) |
||
| 2432 | printf(" %2d %5d %7d %" PRIu64 " %s\n", depth, value, time, |
||
| 2433 | nodes, pv + 10); |
||
| 2434 | else |
||
| 2435 | printf(" %2d %5d %7d %" PRIu64 " %s\n", depth, value, time, |
||
| 2436 | nodes, pv); |
||
| 2437 | } |
||
| 2438 | fflush(stdout); |
||
| 2439 | } |
||
| 2440 | } |
||
| 2441 | |||
| 2442 | /* |
||
| 2443 | ******************************************************************************* |
||
| 2444 | * * |
||
| 2445 | * Output() is used to print the principal variation whenever it changes. * |
||
| 2446 | * One additional feature is that Output() will try to do something about * |
||
| 2447 | * variations truncated by the transposition table. If the variation was * |
||
| 2448 | * cut short by a transposition table hit, then we can make the last move, * |
||
| 2449 | * add it to the end of the variation and extend the depth of the variation * |
||
| 2450 | * to cover it. * |
||
| 2451 | * * |
||
| 2452 | ******************************************************************************* |
||
| 2453 | */ |
||
| 2454 | void Output(TREE * RESTRICT tree, int bound) { |
||
| 2455 | int wtm; |
||
| 2456 | int i; |
||
| 2457 | ROOT_MOVE temp_rm; |
||
| 2458 | |||
| 2459 | /* |
||
| 2460 | ************************************************************ |
||
| 2461 | * * |
||
| 2462 | * First, move the best move to the top of the ply-1 move * |
||
| 2463 | * list if it's not already there, so that it will be the * |
||
| 2464 | * first move tried in the next iteration. * |
||
| 2465 | * * |
||
| 2466 | ************************************************************ |
||
| 2467 | */ |
||
| 2468 | wtm = root_wtm; |
||
| 2469 | if (!abort_search) { |
||
| 2470 | kibitz_depth = iteration_depth; |
||
| 2471 | for (i = 0; i < n_root_moves; i++) |
||
| 2472 | if (tree->curmv[1] == root_moves[i].move) |
||
| 2473 | break; |
||
| 2474 | if (i && i < n_root_moves) { |
||
| 2475 | temp_rm = root_moves[i]; |
||
| 2476 | for (; i > 0; i--) |
||
| 2477 | root_moves[i] = root_moves[i - 1]; |
||
| 2478 | root_moves[0] = temp_rm; |
||
| 2479 | } |
||
| 2480 | root_moves[0].bm_age = 4; |
||
| 2481 | end_time = ReadClock(); |
||
| 2482 | /* |
||
| 2483 | ************************************************************ |
||
| 2484 | * * |
||
| 2485 | * If this is not a fail-high move, then output the PV by * |
||
| 2486 | * walking down the path being backed up. * |
||
| 2487 | * * |
||
| 2488 | ************************************************************ |
||
| 2489 | */ |
||
| 2490 | if (tree->pv[1].pathv < bound) { |
||
| 2491 | UnmakeMove(tree, 1, tree->pv[1].path[1], root_wtm); |
||
| 2492 | DisplayPV(tree, 6, wtm, end_time - start_time, &tree->pv[1]); |
||
| 2493 | MakeMove(tree, 1, tree->pv[1].path[1], root_wtm); |
||
| 2494 | } else { |
||
| 2495 | if (tree->curmv[1] != tree->pv[1].path[1]) { |
||
| 2496 | tree->pv[1].path[1] = tree->curmv[1]; |
||
| 2497 | tree->pv[1].pathl = 2; |
||
| 2498 | tree->pv[1].pathh = 0; |
||
| 2499 | tree->pv[1].pathd = iteration_depth; |
||
| 2500 | } |
||
| 2501 | } |
||
| 2502 | } |
||
| 2503 | } |
||
| 2504 | |||
| 2505 | /* |
||
| 2506 | ******************************************************************************* |
||
| 2507 | * * |
||
| 2508 | * Trace() is used to print the search trace output each time a node is* |
||
| 2509 | * traversed in the tree. * |
||
| 2510 | * * |
||
| 2511 | ******************************************************************************* |
||
| 2512 | */ |
||
| 2513 | void Trace(TREE * RESTRICT tree, int ply, int depth, int wtm, int alpha, |
||
| 2514 | int beta, const char *name, int phase) { |
||
| 2515 | int i; |
||
| 2516 | |||
| 2517 | Lock(lock_io); |
||
| 2518 | for (i = 1; i < ply; i++) |
||
| 2519 | printf(" "); |
||
| 2520 | if (phase != EVALUATION) { |
||
| 2521 | printf("%d %s d:%2d [%s,", ply, OutputMove(tree, tree->curmv[ply], ply, |
||
| 2522 | wtm), depth, DisplayEvaluation(alpha, 1)); |
||
| 2523 | printf("%s] n:%" PRIu64 " %s(%d)", DisplayEvaluation(beta, 1), |
||
| 2524 | (tree->nodes_searched), name, phase); |
||
| 2525 | if (smp_max_threads > 1) |
||
| 2526 | printf(" (t=%d) ", tree->thread_id); |
||
| 2527 | printf("\n"); |
||
| 2528 | } else { |
||
| 2529 | printf("%d window/eval(%s) = {", ply, name); |
||
| 2530 | printf("%s, ", DisplayEvaluation(alpha, 1)); |
||
| 2531 | printf("%s, ", DisplayEvaluation(depth, 1)); |
||
| 2532 | printf("%s}\n", DisplayEvaluation(beta, 1)); |
||
| 2533 | } |
||
| 2534 | fflush(0); |
||
| 2535 | Unlock(lock_io); |
||
| 2536 | } |
||
| 2537 | |||
| 2538 | /* |
||
| 2539 | ******************************************************************************* |
||
| 2540 | * * |
||
| 2541 | * StrCnt() counts the number of times a character occurs in a string. * |
||
| 2542 | * * |
||
| 2543 | ******************************************************************************* |
||
| 2544 | */ |
||
| 2545 | int StrCnt(char *string, char testchar) { |
||
| 2546 | int count = 0; |
||
| 2547 | size_t i; // Pierre-Marie Baty -- fixed type |
||
| 2548 | |||
| 2549 | for (i = 0; i < strlen(string); i++) |
||
| 2550 | if (string[i] == testchar) |
||
| 2551 | count++; |
||
| 2552 | return count; |
||
| 2553 | } |
||
| 2554 | |||
| 2555 | /* |
||
| 2556 | ******************************************************************************* |
||
| 2557 | * * |
||
| 2558 | * ValidMove() is used to verify that a move is playable. It is mainly * |
||
| 2559 | * used to confirm that a move retrieved from the transposition/refutation * |
||
| 2560 | * and/or killer move is valid in the current position by checking the move * |
||
| 2561 | * against the current chess board, castling status, en passant status, etc. * |
||
| 2562 | * * |
||
| 2563 | ******************************************************************************* |
||
| 2564 | */ |
||
| 2565 | int ValidMove(TREE * RESTRICT tree, int ply, int wtm, int move) { |
||
| 2566 | static int epdir[2] = { 8, -8 }; |
||
| 2567 | static int csq[2] = { C8, C1 }; |
||
| 2568 | static int dsq[2] = { D8, D1 }; |
||
| 2569 | static int esq[2] = { E8, E1 }; |
||
| 2570 | static int fsq[2] = { F8, F1 }; |
||
| 2571 | static int gsq[2] = { G8, G1 }; |
||
| 2572 | int btm = Flip(wtm); |
||
| 2573 | |||
| 2574 | /* |
||
| 2575 | ************************************************************ |
||
| 2576 | * * |
||
| 2577 | * Make sure that the piece on <from> is the right color. * |
||
| 2578 | * * |
||
| 2579 | ************************************************************ |
||
| 2580 | */ |
||
| 2581 | if (PcOnSq(From(move)) != ((wtm) ? Piece(move) : -Piece(move))) |
||
| 2582 | return 0; |
||
| 2583 | switch (Piece(move)) { |
||
| 2584 | /* |
||
| 2585 | ************************************************************ |
||
| 2586 | * * |
||
| 2587 | * Null-moves are caught as it is possible for a killer * |
||
| 2588 | * move entry to be zero at certain times. * |
||
| 2589 | * * |
||
| 2590 | ************************************************************ |
||
| 2591 | */ |
||
| 2592 | case empty: |
||
| 2593 | return 0; |
||
| 2594 | /* |
||
| 2595 | ************************************************************ |
||
| 2596 | * * |
||
| 2597 | * King moves are validated here if the king is moving two * |
||
| 2598 | * squares at one time (castling moves). Otherwise fall * |
||
| 2599 | * into the normal piece validation routine below. For * |
||
| 2600 | * castling moves, we need to verify that the castling * |
||
| 2601 | * status is correct to avoid "creating" a new rook or * |
||
| 2602 | * king. * |
||
| 2603 | * * |
||
| 2604 | ************************************************************ |
||
| 2605 | */ |
||
| 2606 | case king: |
||
| 2607 | if (Abs(From(move) - To(move)) == 2) { |
||
| 2608 | if (Castle(ply, wtm) > 0) { |
||
| 2609 | if (To(move) == csq[wtm]) { |
||
| 2610 | if ((!(Castle(ply, wtm) & 2)) || (OccupiedSquares & OOO[wtm]) |
||
| 2611 | || (AttacksTo(tree, csq[wtm]) & Occupied(btm)) |
||
| 2612 | || (AttacksTo(tree, dsq[wtm]) & Occupied(btm)) |
||
| 2613 | || (AttacksTo(tree, esq[wtm]) & Occupied(btm))) |
||
| 2614 | return 0; |
||
| 2615 | } else if (To(move) == gsq[wtm]) { |
||
| 2616 | if ((!(Castle(ply, wtm) & 1)) || (OccupiedSquares & OO[wtm]) |
||
| 2617 | || (AttacksTo(tree, esq[wtm]) & Occupied(btm)) |
||
| 2618 | || (AttacksTo(tree, fsq[wtm]) & Occupied(btm)) |
||
| 2619 | || (AttacksTo(tree, gsq[wtm]) & Occupied(btm))) |
||
| 2620 | return 0; |
||
| 2621 | } |
||
| 2622 | } else |
||
| 2623 | return 0; |
||
| 2624 | return 1; |
||
| 2625 | } |
||
| 2626 | break; |
||
| 2627 | /* |
||
| 2628 | ************************************************************ |
||
| 2629 | * * |
||
| 2630 | * Check for a normal pawn advance. * |
||
| 2631 | * * |
||
| 2632 | ************************************************************ |
||
| 2633 | */ |
||
| 2634 | case pawn: |
||
| 2635 | if (((wtm) ? To(move) - From(move) : From(move) - To(move)) < 0) |
||
| 2636 | return 0; |
||
| 2637 | if (Abs(From(move) - To(move)) == 8) { |
||
| 2638 | if (!PcOnSq(To(move))) |
||
| 2639 | return 1; |
||
| 2640 | return 0; |
||
| 2641 | } |
||
| 2642 | if (Abs(From(move) - To(move)) == 16) { |
||
| 2643 | if (!PcOnSq(To(move)) && !PcOnSq(To(move) + epdir[wtm])) |
||
| 2644 | return 1; |
||
| 2645 | return 0; |
||
| 2646 | } |
||
| 2647 | if (!Captured(move)) |
||
| 2648 | return 0; |
||
| 2649 | /* |
||
| 2650 | ************************************************************ |
||
| 2651 | * * |
||
| 2652 | * Check for an en passant capture which is somewhat * |
||
| 2653 | * unusual in that the [to] square does not contain the * |
||
| 2654 | * pawn being captured. Make sure that the pawn being * |
||
| 2655 | * captured advanced two ranks the previous move. * |
||
| 2656 | * * |
||
| 2657 | ************************************************************ |
||
| 2658 | */ |
||
| 2659 | if ((PcOnSq(To(move)) == 0) |
||
| 2660 | && (PcOnSq(To(move) + epdir[wtm]) == ((wtm) ? -pawn : pawn)) |
||
| 2661 | && (EnPassantTarget(ply) & SetMask(To(move)))) |
||
| 2662 | return 1; |
||
| 2663 | break; |
||
| 2664 | /* |
||
| 2665 | ************************************************************ |
||
| 2666 | * * |
||
| 2667 | * Normal moves are all checked the same way. * |
||
| 2668 | * * |
||
| 2669 | ************************************************************ |
||
| 2670 | */ |
||
| 2671 | case queen: |
||
| 2672 | case rook: |
||
| 2673 | case bishop: |
||
| 2674 | if (Attack(From(move), To(move))) |
||
| 2675 | break; |
||
| 2676 | return 0; |
||
| 2677 | case knight: |
||
| 2678 | break; |
||
| 2679 | } |
||
| 2680 | /* |
||
| 2681 | ************************************************************ |
||
| 2682 | * * |
||
| 2683 | * All normal moves are validated in the same manner, by * |
||
| 2684 | * checking the from and to squares and also the attack * |
||
| 2685 | * status for completeness. * |
||
| 2686 | * * |
||
| 2687 | ************************************************************ |
||
| 2688 | */ |
||
| 2689 | if ((Captured(move) == ((wtm) ? -PcOnSq(To(move)) : PcOnSq(To(move)))) |
||
| 2690 | && Captured(move) != king) |
||
| 2691 | return 1; |
||
| 2692 | return 0; |
||
| 2693 | } |
||
| 2694 | |||
| 2695 | /* last modified 02/26/14 */ |
||
| 2696 | /* |
||
| 2697 | ******************************************************************************* |
||
| 2698 | * * |
||
| 2699 | * VerifyMove() tests a move to confirm it is absolutely legal. It shouldn't * |
||
| 2700 | * be used inside the search, but can be used to check a 21-bit (compressed) * |
||
| 2701 | * move to be sure it is safe to make it on the permanent game board. * |
||
| 2702 | * * |
||
| 2703 | ******************************************************************************* |
||
| 2704 | */ |
||
| 2705 | int VerifyMove(TREE * RESTRICT tree, int ply, int wtm, int move) { |
||
| 2706 | int moves[220], *mv, *mvp; |
||
| 2707 | |||
| 2708 | /* |
||
| 2709 | Generate moves, then eliminate any that are illegal. |
||
| 2710 | */ |
||
| 2711 | if (move == 0) |
||
| 2712 | return 0; |
||
| 2713 | tree->status[MAXPLY] = tree->status[ply]; |
||
| 2714 | mvp = GenerateCaptures(tree, MAXPLY, wtm, moves); |
||
| 2715 | mvp = GenerateNoncaptures(tree, MAXPLY, wtm, mvp); |
||
| 2716 | for (mv = &moves[0]; mv < mvp; mv++) { |
||
| 2717 | MakeMove(tree, MAXPLY, *mv, wtm); |
||
| 2718 | if (!Check(wtm) && move == *mv) { |
||
| 2719 | UnmakeMove(tree, MAXPLY, *mv, wtm); |
||
| 2720 | return 1; |
||
| 2721 | } |
||
| 2722 | UnmakeMove(tree, MAXPLY, *mv, wtm); |
||
| 2723 | } |
||
| 2724 | return 0; |
||
| 2725 | } |
||
| 2726 | |||
| 2727 | /* |
||
| 2728 | ******************************************************************************* |
||
| 2729 | * * |
||
| 2730 | * Windows NUMA support * |
||
| 2731 | * * |
||
| 2732 | ******************************************************************************* |
||
| 2733 | */ |
||
| 2734 | #if !defined(UNIX) |
||
| 2735 | lock_t ThreadsLock; |
||
| 2736 | static BOOL(WINAPI * pGetNumaHighestNodeNumber) (PULONG); |
||
| 2737 | static BOOL(WINAPI * pGetNumaNodeProcessorMask) (UCHAR, PULONGLONG); |
||
| 2738 | static DWORD(WINAPI * pSetThreadIdealProcessor) (HANDLE, DWORD); |
||
| 2739 | static volatile BOOL fThreadsInitialized = FALSE; |
||
| 2740 | static BOOL fSystemIsNUMA = FALSE; |
||
| 2741 | static ULONGLONG ullProcessorMask[256]; |
||
| 2742 | static ULONG ulNumaNodes; |
||
| 2743 | static ULONG ulNumaNode = 0; |
||
| 2744 | |||
| 2745 | // Get NUMA-related information from Windows |
||
| 2746 | static void WinNumaInit(void) { |
||
| 2747 | //DWORD_PTR dwMask; // Pierre-Marie Baty -- unused variable |
||
| 2748 | HMODULE hModule; |
||
| 2749 | ULONG ulCPU, ulNode; |
||
| 2750 | ULONGLONG ullMask; |
||
| 2751 | DWORD dwCPU; |
||
| 2752 | |||
| 2753 | if (!fThreadsInitialized) { |
||
| 2754 | Lock(ThreadsLock); |
||
| 2755 | if (!fThreadsInitialized) { |
||
| 2756 | printf("\nInitializing multiple threads.\n"); |
||
| 2757 | fThreadsInitialized = TRUE; |
||
| 2758 | hModule = GetModuleHandle("kernel32"); |
||
| 2759 | pGetNumaHighestNodeNumber = |
||
| 2760 | (void *) GetProcAddress(hModule, "GetNumaHighestNodeNumber"); |
||
| 2761 | pGetNumaNodeProcessorMask = |
||
| 2762 | (void *) GetProcAddress(hModule, "GetNumaNodeProcessorMask"); |
||
| 2763 | pSetThreadIdealProcessor = |
||
| 2764 | (void *) GetProcAddress(hModule, "SetThreadIdealProcessor"); |
||
| 2765 | if (pGetNumaHighestNodeNumber && pGetNumaNodeProcessorMask && |
||
| 2766 | pGetNumaHighestNodeNumber(&ulNumaNodes) && (ulNumaNodes > 0)) { |
||
| 2767 | fSystemIsNUMA = TRUE; |
||
| 2768 | if (ulNumaNodes > 255) |
||
| 2769 | ulNumaNodes = 255; |
||
| 2770 | printf("System is NUMA. %d nodes reported by Windows\n", |
||
| 2771 | ulNumaNodes + 1); |
||
| 2772 | for (ulNode = 0; ulNode <= ulNumaNodes; ulNode++) { |
||
| 2773 | pGetNumaNodeProcessorMask((UCHAR) ulNode, |
||
| 2774 | &ullProcessorMask[ulNode]); |
||
| 2775 | printf("Node %d CPUs: ", ulNode); |
||
| 2776 | ullMask = ullProcessorMask[ulNode]; |
||
| 2777 | if (0 == ullMask) |
||
| 2778 | fSystemIsNUMA = FALSE; |
||
| 2779 | else { |
||
| 2780 | ulCPU = 0; |
||
| 2781 | do { |
||
| 2782 | if (ullMask & 1) |
||
| 2783 | printf("%d ", ulCPU); |
||
| 2784 | ulCPU++; |
||
| 2785 | ullMask >>= 1; |
||
| 2786 | } while (ullMask); |
||
| 2787 | } |
||
| 2788 | printf("\n"); |
||
| 2789 | } |
||
| 2790 | // Thread 0 was already started on some CPU. To simplify things further, |
||
| 2791 | // exchange ullProcessorMask[0] and ullProcessorMask[node for that CPU], |
||
| 2792 | // so ullProcessorMask[0] would always be node for thread 0 |
||
| 2793 | dwCPU = |
||
| 2794 | pSetThreadIdealProcessor(GetCurrentThread(), MAXIMUM_PROCESSORS); |
||
| 2795 | printf("Current ideal CPU is %u\n", dwCPU); |
||
| 2796 | pSetThreadIdealProcessor(GetCurrentThread(), dwCPU); |
||
| 2797 | if ((((DWORD) - 1) != dwCPU) && (MAXIMUM_PROCESSORS != dwCPU) |
||
| 2798 | && !(ullProcessorMask[0] & (1ull << dwCPU))) { // Pierre-Marie Baty -- added "ll" prefix |
||
| 2799 | for (ulNode = 1; ulNode <= ulNumaNodes; ulNode++) { |
||
| 2800 | if (ullProcessorMask[ulNode] & (1ull << dwCPU)) { // Pierre-Marie Baty -- added "ll" prefix |
||
| 2801 | printf("Exchanging nodes 0 and %d\n", ulNode); |
||
| 2802 | ullMask = ullProcessorMask[ulNode]; |
||
| 2803 | ullProcessorMask[ulNode] = ullProcessorMask[0]; |
||
| 2804 | ullProcessorMask[0] = ullMask; |
||
| 2805 | break; |
||
| 2806 | } |
||
| 2807 | } |
||
| 2808 | } |
||
| 2809 | } else |
||
| 2810 | printf("System is SMP, not NUMA.\n"); |
||
| 2811 | } |
||
| 2812 | Unlock(ThreadsLock); |
||
| 2813 | } |
||
| 2814 | } |
||
| 2815 | |||
| 2816 | // Start thread. For NUMA system set its affinity. |
||
| 2817 | # if (CPUS > 1) |
||
| 2818 | pthread_t NumaStartThread(void *func, void *args) { |
||
| 2819 | HANDLE hThread; |
||
| 2820 | ULONGLONG ullMask; |
||
| 2821 | |||
| 2822 | WinNumaInit(); |
||
| 2823 | if (fSystemIsNUMA) { |
||
| 2824 | ulNumaNode++; |
||
| 2825 | if (ulNumaNode > ulNumaNodes) |
||
| 2826 | ulNumaNode = 0; |
||
| 2827 | ullMask = ullProcessorMask[ulNumaNode]; |
||
| 2828 | printf("Starting thread on node %d CPU mask %I64d\n", ulNumaNode, |
||
| 2829 | ullMask); |
||
| 2830 | SetThreadAffinityMask(GetCurrentThread(), (DWORD_PTR) ullMask); |
||
| 2831 | hThread = (HANDLE) _beginthreadex(0, 0, func, args, CREATE_SUSPENDED, 0); |
||
| 2832 | SetThreadAffinityMask(hThread, (DWORD_PTR) ullMask); |
||
| 2833 | ResumeThread(hThread); |
||
| 2834 | SetThreadAffinityMask(GetCurrentThread(), (DWORD_PTR) ullProcessorMask[0]); // Pierre-Marie Baty -- added type cast |
||
| 2835 | } else |
||
| 2836 | hThread = (HANDLE) _beginthreadex(0, 0, func, args, 0, 0); |
||
| 2837 | return hThread; |
||
| 2838 | } |
||
| 2839 | # endif |
||
| 2840 | |||
| 2841 | // Allocate memory for thread #N |
||
| 2842 | void *WinMalloc(size_t cbBytes, int iThread) { |
||
| 2843 | HANDLE hThread; |
||
| 2844 | DWORD_PTR dwAffinityMask; |
||
| 2845 | void *pBytes; |
||
| 2846 | ULONG ulNode; |
||
| 2847 | |||
| 2848 | WinNumaInit(); |
||
| 2849 | if (fSystemIsNUMA) { |
||
| 2850 | ulNode = iThread % (ulNumaNodes + 1); |
||
| 2851 | hThread = GetCurrentThread(); |
||
| 2852 | dwAffinityMask = SetThreadAffinityMask(hThread, (DWORD_PTR) ullProcessorMask[ulNode]); // Pierre-Marie Baty -- added type cast |
||
| 2853 | pBytes = VirtualAlloc(NULL, cbBytes, MEM_COMMIT, PAGE_READWRITE); |
||
| 2854 | if (pBytes == NULL) |
||
| 2855 | ExitProcess(GetLastError()); |
||
| 2856 | memset(pBytes, 0, cbBytes); |
||
| 2857 | SetThreadAffinityMask(hThread, dwAffinityMask); |
||
| 2858 | } else { |
||
| 2859 | pBytes = VirtualAlloc(NULL, cbBytes, MEM_COMMIT, PAGE_READWRITE); |
||
| 2860 | if (pBytes == NULL) |
||
| 2861 | ExitProcess(GetLastError()); |
||
| 2862 | memset(pBytes, 0, cbBytes); |
||
| 2863 | } |
||
| 2864 | return pBytes; |
||
| 2865 | } |
||
| 2866 | |||
| 2867 | // Allocate interleaved memory |
||
| 2868 | void *WinMallocInterleaved(size_t cbBytes, int cThreads) { |
||
| 2869 | char *pBase; |
||
| 2870 | char *pEnd; |
||
| 2871 | char *pch; |
||
| 2872 | HANDLE hThread; |
||
| 2873 | DWORD_PTR dwAffinityMask; |
||
| 2874 | ULONG ulNode; |
||
| 2875 | SYSTEM_INFO sSysInfo; |
||
| 2876 | size_t dwStep; |
||
| 2877 | int iThread; |
||
| 2878 | DWORD dwPageSize; // the page size on this computer |
||
| 2879 | LPVOID lpvResult; |
||
| 2880 | |||
| 2881 | WinNumaInit(); |
||
| 2882 | if (fSystemIsNUMA && (cThreads > 1)) { |
||
| 2883 | GetSystemInfo(&sSysInfo); // populate the system information structure |
||
| 2884 | dwPageSize = sSysInfo.dwPageSize; |
||
| 2885 | // Reserve pages in the process's virtual address space. |
||
| 2886 | pBase = (char *) VirtualAlloc(NULL, cbBytes, MEM_RESERVE, PAGE_NOACCESS); |
||
| 2887 | if (pBase == NULL) { |
||
| 2888 | printf("VirtualAlloc() reserve failed\n"); |
||
| 2889 | CraftyExit(0); |
||
| 2890 | } |
||
| 2891 | // Now walk through memory, committing each page |
||
| 2892 | hThread = GetCurrentThread(); |
||
| 2893 | dwStep = dwPageSize * cThreads; |
||
| 2894 | pEnd = pBase + cbBytes; |
||
| 2895 | for (iThread = 0; iThread < cThreads; iThread++) { |
||
| 2896 | ulNode = iThread % (ulNumaNodes + 1); |
||
| 2897 | dwAffinityMask = |
||
| 2898 | SetThreadAffinityMask(hThread, (DWORD_PTR) ullProcessorMask[ulNode]); // Pierre-Marie Baty -- added type cast |
||
| 2899 | for (pch = pBase + iThread * dwPageSize; pch < pEnd; pch += dwStep) { |
||
| 2900 | lpvResult = VirtualAlloc(pch, // next page to commit |
||
| 2901 | dwPageSize, // page size, in bytes |
||
| 2902 | MEM_COMMIT, // allocate a committed page |
||
| 2903 | PAGE_READWRITE); // read/write access |
||
| 2904 | if (lpvResult == NULL) |
||
| 2905 | ExitProcess(GetLastError()); |
||
| 2906 | memset(lpvResult, 0, dwPageSize); |
||
| 2907 | } |
||
| 2908 | SetThreadAffinityMask(hThread, dwAffinityMask); |
||
| 2909 | } |
||
| 2910 | } else { |
||
| 2911 | pBase = VirtualAlloc(NULL, cbBytes, MEM_COMMIT, PAGE_READWRITE); |
||
| 2912 | if (pBase == NULL) |
||
| 2913 | ExitProcess(GetLastError()); |
||
| 2914 | memset(pBase, 0, cbBytes); |
||
| 2915 | } |
||
| 2916 | return (void *) pBase; |
||
| 2917 | } |
||
| 2918 | |||
| 2919 | // Free interleaved memory |
||
| 2920 | void WinFreeInterleaved(void *pMemory, size_t cBytes) { |
||
| 2921 | VirtualFree(pMemory, 0, MEM_RELEASE); |
||
| 2922 | } |
||
| 2923 | #endif |