Details | Last modification | View Log | RSS feed
| Rev | Author | Line No. | Line |
|---|---|---|---|
| 1 | pmbaty | 1 | /*++ |
| 2 | |||
| 3 | Copyright (c) Microsoft Corporation. All rights reserved. |
||
| 4 | |||
| 5 | Module Name: |
||
| 6 | |||
| 7 | xnamathmatrix.inl |
||
| 8 | |||
| 9 | Abstract: |
||
| 10 | |||
| 11 | XNA math library for Windows and Xbox 360: Matrix functions |
||
| 12 | --*/ |
||
| 13 | |||
| 14 | #if defined(_MSC_VER) && (_MSC_VER > 1000) |
||
| 15 | #pragma once |
||
| 16 | #endif |
||
| 17 | |||
| 18 | #ifndef __XNAMATHMATRIX_INL__ |
||
| 19 | #define __XNAMATHMATRIX_INL__ |
||
| 20 | |||
| 21 | /**************************************************************************** |
||
| 22 | * |
||
| 23 | * Matrix |
||
| 24 | * |
||
| 25 | ****************************************************************************/ |
||
| 26 | |||
| 27 | //------------------------------------------------------------------------------ |
||
| 28 | // Comparison operations |
||
| 29 | //------------------------------------------------------------------------------ |
||
| 30 | |||
| 31 | //------------------------------------------------------------------------------ |
||
| 32 | |||
| 33 | // Return TRUE if any entry in the matrix is NaN |
||
| 34 | XMFINLINE BOOL XMMatrixIsNaN |
||
| 35 | ( |
||
| 36 | CXMMATRIX M |
||
| 37 | ) |
||
| 38 | { |
||
| 39 | #if defined(_XM_NO_INTRINSICS_) |
||
| 40 | UINT i, uTest; |
||
| 41 | const UINT *pWork; |
||
| 42 | |||
| 43 | i = 16; |
||
| 44 | pWork = (const UINT *)(&M.m[0][0]); |
||
| 45 | do { |
||
| 46 | // Fetch value into integer unit |
||
| 47 | uTest = pWork[0]; |
||
| 48 | // Remove sign |
||
| 49 | uTest &= 0x7FFFFFFFU; |
||
| 50 | // NaN is 0x7F800001 through 0x7FFFFFFF inclusive |
||
| 51 | uTest -= 0x7F800001U; |
||
| 52 | if (uTest<0x007FFFFFU) { |
||
| 53 | break; // NaN found |
||
| 54 | } |
||
| 55 | ++pWork; // Next entry |
||
| 56 | } while (--i); |
||
| 57 | return (i!=0); // i == 0 if nothing matched |
||
| 58 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 59 | // Load in registers |
||
| 60 | XMVECTOR vX = M.r[0]; |
||
| 61 | XMVECTOR vY = M.r[1]; |
||
| 62 | XMVECTOR vZ = M.r[2]; |
||
| 63 | XMVECTOR vW = M.r[3]; |
||
| 64 | // Test themselves to check for NaN |
||
| 65 | vX = _mm_cmpneq_ps(vX,vX); |
||
| 66 | vY = _mm_cmpneq_ps(vY,vY); |
||
| 67 | vZ = _mm_cmpneq_ps(vZ,vZ); |
||
| 68 | vW = _mm_cmpneq_ps(vW,vW); |
||
| 69 | // Or all the results |
||
| 70 | vX = _mm_or_ps(vX,vZ); |
||
| 71 | vY = _mm_or_ps(vY,vW); |
||
| 72 | vX = _mm_or_ps(vX,vY); |
||
| 73 | // If any tested true, return true |
||
| 74 | return (_mm_movemask_ps(vX)!=0); |
||
| 75 | #else |
||
| 76 | #endif |
||
| 77 | } |
||
| 78 | |||
| 79 | //------------------------------------------------------------------------------ |
||
| 80 | |||
| 81 | // Return TRUE if any entry in the matrix is +/-INF |
||
| 82 | XMFINLINE BOOL XMMatrixIsInfinite |
||
| 83 | ( |
||
| 84 | CXMMATRIX M |
||
| 85 | ) |
||
| 86 | { |
||
| 87 | #if defined(_XM_NO_INTRINSICS_) |
||
| 88 | UINT i, uTest; |
||
| 89 | const UINT *pWork; |
||
| 90 | |||
| 91 | i = 16; |
||
| 92 | pWork = (const UINT *)(&M.m[0][0]); |
||
| 93 | do { |
||
| 94 | // Fetch value into integer unit |
||
| 95 | uTest = pWork[0]; |
||
| 96 | // Remove sign |
||
| 97 | uTest &= 0x7FFFFFFFU; |
||
| 98 | // INF is 0x7F800000 |
||
| 99 | if (uTest==0x7F800000U) { |
||
| 100 | break; // INF found |
||
| 101 | } |
||
| 102 | ++pWork; // Next entry |
||
| 103 | } while (--i); |
||
| 104 | return (i!=0); // i == 0 if nothing matched |
||
| 105 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 106 | // Mask off the sign bits |
||
| 107 | XMVECTOR vTemp1 = _mm_and_ps(M.r[0],g_XMAbsMask); |
||
| 108 | XMVECTOR vTemp2 = _mm_and_ps(M.r[1],g_XMAbsMask); |
||
| 109 | XMVECTOR vTemp3 = _mm_and_ps(M.r[2],g_XMAbsMask); |
||
| 110 | XMVECTOR vTemp4 = _mm_and_ps(M.r[3],g_XMAbsMask); |
||
| 111 | // Compare to infinity |
||
| 112 | vTemp1 = _mm_cmpeq_ps(vTemp1,g_XMInfinity); |
||
| 113 | vTemp2 = _mm_cmpeq_ps(vTemp2,g_XMInfinity); |
||
| 114 | vTemp3 = _mm_cmpeq_ps(vTemp3,g_XMInfinity); |
||
| 115 | vTemp4 = _mm_cmpeq_ps(vTemp4,g_XMInfinity); |
||
| 116 | // Or the answers together |
||
| 117 | vTemp1 = _mm_or_ps(vTemp1,vTemp2); |
||
| 118 | vTemp3 = _mm_or_ps(vTemp3,vTemp4); |
||
| 119 | vTemp1 = _mm_or_ps(vTemp1,vTemp3); |
||
| 120 | // If any are infinity, the signs are true. |
||
| 121 | return (_mm_movemask_ps(vTemp1)!=0); |
||
| 122 | #else // _XM_VMX128_INTRINSICS_ |
||
| 123 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 124 | } |
||
| 125 | |||
| 126 | //------------------------------------------------------------------------------ |
||
| 127 | |||
| 128 | // Return TRUE if the XMMatrix is equal to identity |
||
| 129 | XMFINLINE BOOL XMMatrixIsIdentity |
||
| 130 | ( |
||
| 131 | CXMMATRIX M |
||
| 132 | ) |
||
| 133 | { |
||
| 134 | #if defined(_XM_NO_INTRINSICS_) |
||
| 135 | unsigned int uOne, uZero; |
||
| 136 | const unsigned int *pWork; |
||
| 137 | |||
| 138 | // Use the integer pipeline to reduce branching to a minimum |
||
| 139 | pWork = (const unsigned int*)(&M.m[0][0]); |
||
| 140 | // Convert 1.0f to zero and or them together |
||
| 141 | uOne = pWork[0]^0x3F800000U; |
||
| 142 | // Or all the 0.0f entries together |
||
| 143 | uZero = pWork[1]; |
||
| 144 | uZero |= pWork[2]; |
||
| 145 | uZero |= pWork[3]; |
||
| 146 | // 2nd row |
||
| 147 | uZero |= pWork[4]; |
||
| 148 | uOne |= pWork[5]^0x3F800000U; |
||
| 149 | uZero |= pWork[6]; |
||
| 150 | uZero |= pWork[7]; |
||
| 151 | // 3rd row |
||
| 152 | uZero |= pWork[8]; |
||
| 153 | uZero |= pWork[9]; |
||
| 154 | uOne |= pWork[10]^0x3F800000U; |
||
| 155 | uZero |= pWork[11]; |
||
| 156 | // 4th row |
||
| 157 | uZero |= pWork[12]; |
||
| 158 | uZero |= pWork[13]; |
||
| 159 | uZero |= pWork[14]; |
||
| 160 | uOne |= pWork[15]^0x3F800000U; |
||
| 161 | // If all zero entries are zero, the uZero==0 |
||
| 162 | uZero &= 0x7FFFFFFF; // Allow -0.0f |
||
| 163 | // If all 1.0f entries are 1.0f, then uOne==0 |
||
| 164 | uOne |= uZero; |
||
| 165 | return (uOne==0); |
||
| 166 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 167 | XMVECTOR vTemp1 = _mm_cmpeq_ps(M.r[0],g_XMIdentityR0); |
||
| 168 | XMVECTOR vTemp2 = _mm_cmpeq_ps(M.r[1],g_XMIdentityR1); |
||
| 169 | XMVECTOR vTemp3 = _mm_cmpeq_ps(M.r[2],g_XMIdentityR2); |
||
| 170 | XMVECTOR vTemp4 = _mm_cmpeq_ps(M.r[3],g_XMIdentityR3); |
||
| 171 | vTemp1 = _mm_and_ps(vTemp1,vTemp2); |
||
| 172 | vTemp3 = _mm_and_ps(vTemp3,vTemp4); |
||
| 173 | vTemp1 = _mm_and_ps(vTemp1,vTemp3); |
||
| 174 | return (_mm_movemask_ps(vTemp1)==0x0f); |
||
| 175 | #else // _XM_VMX128_INTRINSICS_ |
||
| 176 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 177 | } |
||
| 178 | |||
| 179 | //------------------------------------------------------------------------------ |
||
| 180 | // Computation operations |
||
| 181 | //------------------------------------------------------------------------------ |
||
| 182 | |||
| 183 | //------------------------------------------------------------------------------ |
||
| 184 | // Perform a 4x4 matrix multiply by a 4x4 matrix |
||
| 185 | XMFINLINE XMMATRIX XMMatrixMultiply |
||
| 186 | ( |
||
| 187 | CXMMATRIX M1, |
||
| 188 | CXMMATRIX M2 |
||
| 189 | ) |
||
| 190 | { |
||
| 191 | #if defined(_XM_NO_INTRINSICS_) |
||
| 192 | XMMATRIX mResult; |
||
| 193 | // Cache the invariants in registers |
||
| 194 | float x = M1.m[0][0]; |
||
| 195 | float y = M1.m[0][1]; |
||
| 196 | float z = M1.m[0][2]; |
||
| 197 | float w = M1.m[0][3]; |
||
| 198 | // Perform the operation on the first row |
||
| 199 | mResult.m[0][0] = (M2.m[0][0]*x)+(M2.m[1][0]*y)+(M2.m[2][0]*z)+(M2.m[3][0]*w); |
||
| 200 | mResult.m[0][1] = (M2.m[0][1]*x)+(M2.m[1][1]*y)+(M2.m[2][1]*z)+(M2.m[3][1]*w); |
||
| 201 | mResult.m[0][2] = (M2.m[0][2]*x)+(M2.m[1][2]*y)+(M2.m[2][2]*z)+(M2.m[3][2]*w); |
||
| 202 | mResult.m[0][3] = (M2.m[0][3]*x)+(M2.m[1][3]*y)+(M2.m[2][3]*z)+(M2.m[3][3]*w); |
||
| 203 | // Repeat for all the other rows |
||
| 204 | x = M1.m[1][0]; |
||
| 205 | y = M1.m[1][1]; |
||
| 206 | z = M1.m[1][2]; |
||
| 207 | w = M1.m[1][3]; |
||
| 208 | mResult.m[1][0] = (M2.m[0][0]*x)+(M2.m[1][0]*y)+(M2.m[2][0]*z)+(M2.m[3][0]*w); |
||
| 209 | mResult.m[1][1] = (M2.m[0][1]*x)+(M2.m[1][1]*y)+(M2.m[2][1]*z)+(M2.m[3][1]*w); |
||
| 210 | mResult.m[1][2] = (M2.m[0][2]*x)+(M2.m[1][2]*y)+(M2.m[2][2]*z)+(M2.m[3][2]*w); |
||
| 211 | mResult.m[1][3] = (M2.m[0][3]*x)+(M2.m[1][3]*y)+(M2.m[2][3]*z)+(M2.m[3][3]*w); |
||
| 212 | x = M1.m[2][0]; |
||
| 213 | y = M1.m[2][1]; |
||
| 214 | z = M1.m[2][2]; |
||
| 215 | w = M1.m[2][3]; |
||
| 216 | mResult.m[2][0] = (M2.m[0][0]*x)+(M2.m[1][0]*y)+(M2.m[2][0]*z)+(M2.m[3][0]*w); |
||
| 217 | mResult.m[2][1] = (M2.m[0][1]*x)+(M2.m[1][1]*y)+(M2.m[2][1]*z)+(M2.m[3][1]*w); |
||
| 218 | mResult.m[2][2] = (M2.m[0][2]*x)+(M2.m[1][2]*y)+(M2.m[2][2]*z)+(M2.m[3][2]*w); |
||
| 219 | mResult.m[2][3] = (M2.m[0][3]*x)+(M2.m[1][3]*y)+(M2.m[2][3]*z)+(M2.m[3][3]*w); |
||
| 220 | x = M1.m[3][0]; |
||
| 221 | y = M1.m[3][1]; |
||
| 222 | z = M1.m[3][2]; |
||
| 223 | w = M1.m[3][3]; |
||
| 224 | mResult.m[3][0] = (M2.m[0][0]*x)+(M2.m[1][0]*y)+(M2.m[2][0]*z)+(M2.m[3][0]*w); |
||
| 225 | mResult.m[3][1] = (M2.m[0][1]*x)+(M2.m[1][1]*y)+(M2.m[2][1]*z)+(M2.m[3][1]*w); |
||
| 226 | mResult.m[3][2] = (M2.m[0][2]*x)+(M2.m[1][2]*y)+(M2.m[2][2]*z)+(M2.m[3][2]*w); |
||
| 227 | mResult.m[3][3] = (M2.m[0][3]*x)+(M2.m[1][3]*y)+(M2.m[2][3]*z)+(M2.m[3][3]*w); |
||
| 228 | return mResult; |
||
| 229 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 230 | XMMATRIX mResult; |
||
| 231 | // Use vW to hold the original row |
||
| 232 | XMVECTOR vW = M1.r[0]; |
||
| 233 | // Splat the component X,Y,Z then W |
||
| 234 | XMVECTOR vX = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(0,0,0,0)); |
||
| 235 | XMVECTOR vY = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(1,1,1,1)); |
||
| 236 | XMVECTOR vZ = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(2,2,2,2)); |
||
| 237 | vW = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(3,3,3,3)); |
||
| 238 | // Perform the opertion on the first row |
||
| 239 | vX = _mm_mul_ps(vX,M2.r[0]); |
||
| 240 | vY = _mm_mul_ps(vY,M2.r[1]); |
||
| 241 | vZ = _mm_mul_ps(vZ,M2.r[2]); |
||
| 242 | vW = _mm_mul_ps(vW,M2.r[3]); |
||
| 243 | // Perform a binary add to reduce cumulative errors |
||
| 244 | vX = _mm_add_ps(vX,vZ); |
||
| 245 | vY = _mm_add_ps(vY,vW); |
||
| 246 | vX = _mm_add_ps(vX,vY); |
||
| 247 | mResult.r[0] = vX; |
||
| 248 | // Repeat for the other 3 rows |
||
| 249 | vW = M1.r[1]; |
||
| 250 | vX = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(0,0,0,0)); |
||
| 251 | vY = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(1,1,1,1)); |
||
| 252 | vZ = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(2,2,2,2)); |
||
| 253 | vW = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(3,3,3,3)); |
||
| 254 | vX = _mm_mul_ps(vX,M2.r[0]); |
||
| 255 | vY = _mm_mul_ps(vY,M2.r[1]); |
||
| 256 | vZ = _mm_mul_ps(vZ,M2.r[2]); |
||
| 257 | vW = _mm_mul_ps(vW,M2.r[3]); |
||
| 258 | vX = _mm_add_ps(vX,vZ); |
||
| 259 | vY = _mm_add_ps(vY,vW); |
||
| 260 | vX = _mm_add_ps(vX,vY); |
||
| 261 | mResult.r[1] = vX; |
||
| 262 | vW = M1.r[2]; |
||
| 263 | vX = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(0,0,0,0)); |
||
| 264 | vY = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(1,1,1,1)); |
||
| 265 | vZ = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(2,2,2,2)); |
||
| 266 | vW = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(3,3,3,3)); |
||
| 267 | vX = _mm_mul_ps(vX,M2.r[0]); |
||
| 268 | vY = _mm_mul_ps(vY,M2.r[1]); |
||
| 269 | vZ = _mm_mul_ps(vZ,M2.r[2]); |
||
| 270 | vW = _mm_mul_ps(vW,M2.r[3]); |
||
| 271 | vX = _mm_add_ps(vX,vZ); |
||
| 272 | vY = _mm_add_ps(vY,vW); |
||
| 273 | vX = _mm_add_ps(vX,vY); |
||
| 274 | mResult.r[2] = vX; |
||
| 275 | vW = M1.r[3]; |
||
| 276 | vX = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(0,0,0,0)); |
||
| 277 | vY = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(1,1,1,1)); |
||
| 278 | vZ = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(2,2,2,2)); |
||
| 279 | vW = _mm_shuffle_ps(vW,vW,_MM_SHUFFLE(3,3,3,3)); |
||
| 280 | vX = _mm_mul_ps(vX,M2.r[0]); |
||
| 281 | vY = _mm_mul_ps(vY,M2.r[1]); |
||
| 282 | vZ = _mm_mul_ps(vZ,M2.r[2]); |
||
| 283 | vW = _mm_mul_ps(vW,M2.r[3]); |
||
| 284 | vX = _mm_add_ps(vX,vZ); |
||
| 285 | vY = _mm_add_ps(vY,vW); |
||
| 286 | vX = _mm_add_ps(vX,vY); |
||
| 287 | mResult.r[3] = vX; |
||
| 288 | return mResult; |
||
| 289 | #else // _XM_VMX128_INTRINSICS_ |
||
| 290 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 291 | } |
||
| 292 | |||
| 293 | //------------------------------------------------------------------------------ |
||
| 294 | |||
| 295 | XMFINLINE XMMATRIX XMMatrixMultiplyTranspose |
||
| 296 | ( |
||
| 297 | CXMMATRIX M1, |
||
| 298 | CXMMATRIX M2 |
||
| 299 | ) |
||
| 300 | { |
||
| 301 | #if defined(_XM_NO_INTRINSICS_) |
||
| 302 | XMMATRIX mResult; |
||
| 303 | // Cache the invariants in registers |
||
| 304 | float x = M2.m[0][0]; |
||
| 305 | float y = M2.m[1][0]; |
||
| 306 | float z = M2.m[2][0]; |
||
| 307 | float w = M2.m[3][0]; |
||
| 308 | // Perform the operation on the first row |
||
| 309 | mResult.m[0][0] = (M1.m[0][0]*x)+(M1.m[0][1]*y)+(M1.m[0][2]*z)+(M1.m[0][3]*w); |
||
| 310 | mResult.m[0][1] = (M1.m[1][0]*x)+(M1.m[1][1]*y)+(M1.m[1][2]*z)+(M1.m[1][3]*w); |
||
| 311 | mResult.m[0][2] = (M1.m[2][0]*x)+(M1.m[2][1]*y)+(M1.m[2][2]*z)+(M1.m[2][3]*w); |
||
| 312 | mResult.m[0][3] = (M1.m[3][0]*x)+(M1.m[3][1]*y)+(M1.m[3][2]*z)+(M1.m[3][3]*w); |
||
| 313 | // Repeat for all the other rows |
||
| 314 | x = M2.m[0][1]; |
||
| 315 | y = M2.m[1][1]; |
||
| 316 | z = M2.m[2][1]; |
||
| 317 | w = M2.m[3][1]; |
||
| 318 | mResult.m[1][0] = (M1.m[0][0]*x)+(M1.m[0][1]*y)+(M1.m[0][2]*z)+(M1.m[0][3]*w); |
||
| 319 | mResult.m[1][1] = (M1.m[1][0]*x)+(M1.m[1][1]*y)+(M1.m[1][2]*z)+(M1.m[1][3]*w); |
||
| 320 | mResult.m[1][2] = (M1.m[2][0]*x)+(M1.m[2][1]*y)+(M1.m[2][2]*z)+(M1.m[2][3]*w); |
||
| 321 | mResult.m[1][3] = (M1.m[3][0]*x)+(M1.m[3][1]*y)+(M1.m[3][2]*z)+(M1.m[3][3]*w); |
||
| 322 | x = M2.m[0][2]; |
||
| 323 | y = M2.m[1][2]; |
||
| 324 | z = M2.m[2][2]; |
||
| 325 | w = M2.m[3][2]; |
||
| 326 | mResult.m[2][0] = (M1.m[0][0]*x)+(M1.m[0][1]*y)+(M1.m[0][2]*z)+(M1.m[0][3]*w); |
||
| 327 | mResult.m[2][1] = (M1.m[1][0]*x)+(M1.m[1][1]*y)+(M1.m[1][2]*z)+(M1.m[1][3]*w); |
||
| 328 | mResult.m[2][2] = (M1.m[2][0]*x)+(M1.m[2][1]*y)+(M1.m[2][2]*z)+(M1.m[2][3]*w); |
||
| 329 | mResult.m[2][3] = (M1.m[3][0]*x)+(M1.m[3][1]*y)+(M1.m[3][2]*z)+(M1.m[3][3]*w); |
||
| 330 | x = M2.m[0][3]; |
||
| 331 | y = M2.m[1][3]; |
||
| 332 | z = M2.m[2][3]; |
||
| 333 | w = M2.m[3][3]; |
||
| 334 | mResult.m[3][0] = (M1.m[0][0]*x)+(M1.m[0][1]*y)+(M1.m[0][2]*z)+(M1.m[0][3]*w); |
||
| 335 | mResult.m[3][1] = (M1.m[1][0]*x)+(M1.m[1][1]*y)+(M1.m[1][2]*z)+(M1.m[1][3]*w); |
||
| 336 | mResult.m[3][2] = (M1.m[2][0]*x)+(M1.m[2][1]*y)+(M1.m[2][2]*z)+(M1.m[2][3]*w); |
||
| 337 | mResult.m[3][3] = (M1.m[3][0]*x)+(M1.m[3][1]*y)+(M1.m[3][2]*z)+(M1.m[3][3]*w); |
||
| 338 | return mResult; |
||
| 339 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 340 | XMMATRIX Product; |
||
| 341 | XMMATRIX Result; |
||
| 342 | Product = XMMatrixMultiply(M1, M2); |
||
| 343 | Result = XMMatrixTranspose(Product); |
||
| 344 | return Result; |
||
| 345 | #else // _XM_VMX128_INTRINSICS_ |
||
| 346 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 347 | } |
||
| 348 | |||
| 349 | //------------------------------------------------------------------------------ |
||
| 350 | |||
| 351 | XMFINLINE XMMATRIX XMMatrixTranspose |
||
| 352 | ( |
||
| 353 | CXMMATRIX M |
||
| 354 | ) |
||
| 355 | { |
||
| 356 | #if defined(_XM_NO_INTRINSICS_) |
||
| 357 | |||
| 358 | XMMATRIX P; |
||
| 359 | XMMATRIX MT; |
||
| 360 | |||
| 361 | // Original matrix: |
||
| 362 | // |
||
| 363 | // m00m01m02m03 |
||
| 364 | // m10m11m12m13 |
||
| 365 | // m20m21m22m23 |
||
| 366 | // m30m31m32m33 |
||
| 367 | |||
| 368 | P.r[0] = XMVectorMergeXY(M.r[0], M.r[2]); // m00m20m01m21 |
||
| 369 | P.r[1] = XMVectorMergeXY(M.r[1], M.r[3]); // m10m30m11m31 |
||
| 370 | P.r[2] = XMVectorMergeZW(M.r[0], M.r[2]); // m02m22m03m23 |
||
| 371 | P.r[3] = XMVectorMergeZW(M.r[1], M.r[3]); // m12m32m13m33 |
||
| 372 | |||
| 373 | MT.r[0] = XMVectorMergeXY(P.r[0], P.r[1]); // m00m10m20m30 |
||
| 374 | MT.r[1] = XMVectorMergeZW(P.r[0], P.r[1]); // m01m11m21m31 |
||
| 375 | MT.r[2] = XMVectorMergeXY(P.r[2], P.r[3]); // m02m12m22m32 |
||
| 376 | MT.r[3] = XMVectorMergeZW(P.r[2], P.r[3]); // m03m13m23m33 |
||
| 377 | |||
| 378 | return MT; |
||
| 379 | |||
| 380 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 381 | // x.x,x.y,y.x,y.y |
||
| 382 | XMVECTOR vTemp1 = _mm_shuffle_ps(M.r[0],M.r[1],_MM_SHUFFLE(1,0,1,0)); |
||
| 383 | // x.z,x.w,y.z,y.w |
||
| 384 | XMVECTOR vTemp3 = _mm_shuffle_ps(M.r[0],M.r[1],_MM_SHUFFLE(3,2,3,2)); |
||
| 385 | // z.x,z.y,w.x,w.y |
||
| 386 | XMVECTOR vTemp2 = _mm_shuffle_ps(M.r[2],M.r[3],_MM_SHUFFLE(1,0,1,0)); |
||
| 387 | // z.z,z.w,w.z,w.w |
||
| 388 | XMVECTOR vTemp4 = _mm_shuffle_ps(M.r[2],M.r[3],_MM_SHUFFLE(3,2,3,2)); |
||
| 389 | XMMATRIX mResult; |
||
| 390 | |||
| 391 | // x.x,y.x,z.x,w.x |
||
| 392 | mResult.r[0] = _mm_shuffle_ps(vTemp1, vTemp2,_MM_SHUFFLE(2,0,2,0)); |
||
| 393 | // x.y,y.y,z.y,w.y |
||
| 394 | mResult.r[1] = _mm_shuffle_ps(vTemp1, vTemp2,_MM_SHUFFLE(3,1,3,1)); |
||
| 395 | // x.z,y.z,z.z,w.z |
||
| 396 | mResult.r[2] = _mm_shuffle_ps(vTemp3, vTemp4,_MM_SHUFFLE(2,0,2,0)); |
||
| 397 | // x.w,y.w,z.w,w.w |
||
| 398 | mResult.r[3] = _mm_shuffle_ps(vTemp3, vTemp4,_MM_SHUFFLE(3,1,3,1)); |
||
| 399 | return mResult; |
||
| 400 | #else // _XM_VMX128_INTRINSICS_ |
||
| 401 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 402 | } |
||
| 403 | |||
| 404 | //------------------------------------------------------------------------------ |
||
| 405 | // Return the inverse and the determinant of a 4x4 matrix |
||
| 406 | XMINLINE XMMATRIX XMMatrixInverse |
||
| 407 | ( |
||
| 408 | XMVECTOR* pDeterminant, |
||
| 409 | CXMMATRIX M |
||
| 410 | ) |
||
| 411 | { |
||
| 412 | #if defined(_XM_NO_INTRINSICS_) |
||
| 413 | |||
| 414 | XMMATRIX R; |
||
| 415 | XMMATRIX MT; |
||
| 416 | XMVECTOR D0, D1, D2; |
||
| 417 | XMVECTOR C0, C1, C2, C3, C4, C5, C6, C7; |
||
| 418 | XMVECTOR V0[4], V1[4]; |
||
| 419 | XMVECTOR Determinant; |
||
| 420 | XMVECTOR Reciprocal; |
||
| 421 | XMMATRIX Result; |
||
| 422 | static CONST XMVECTORU32 SwizzleXXYY = {XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_0Y}; |
||
| 423 | static CONST XMVECTORU32 SwizzleZWZW = {XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_0Z, XM_PERMUTE_0W}; |
||
| 424 | static CONST XMVECTORU32 SwizzleYZXY = {XM_PERMUTE_0Y, XM_PERMUTE_0Z, XM_PERMUTE_0X, XM_PERMUTE_0Y}; |
||
| 425 | static CONST XMVECTORU32 SwizzleZWYZ = {XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_0Y, XM_PERMUTE_0Z}; |
||
| 426 | static CONST XMVECTORU32 SwizzleWXWX = {XM_PERMUTE_0W, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_0X}; |
||
| 427 | static CONST XMVECTORU32 SwizzleZXYX = {XM_PERMUTE_0Z, XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_0X}; |
||
| 428 | static CONST XMVECTORU32 SwizzleYWXZ = {XM_PERMUTE_0Y, XM_PERMUTE_0W, XM_PERMUTE_0X, XM_PERMUTE_0Z}; |
||
| 429 | static CONST XMVECTORU32 SwizzleWZWY = {XM_PERMUTE_0W, XM_PERMUTE_0Z, XM_PERMUTE_0W, XM_PERMUTE_0Y}; |
||
| 430 | static CONST XMVECTORU32 Permute0X0Z1X1Z = {XM_PERMUTE_0X, XM_PERMUTE_0Z, XM_PERMUTE_1X, XM_PERMUTE_1Z}; |
||
| 431 | static CONST XMVECTORU32 Permute0Y0W1Y1W = {XM_PERMUTE_0Y, XM_PERMUTE_0W, XM_PERMUTE_1Y, XM_PERMUTE_1W}; |
||
| 432 | static CONST XMVECTORU32 Permute1Y0Y0W0X = {XM_PERMUTE_1Y, XM_PERMUTE_0Y, XM_PERMUTE_0W, XM_PERMUTE_0X}; |
||
| 433 | static CONST XMVECTORU32 Permute0W0X0Y1X = {XM_PERMUTE_0W, XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_1X}; |
||
| 434 | static CONST XMVECTORU32 Permute0Z1Y1X0Z = {XM_PERMUTE_0Z, XM_PERMUTE_1Y, XM_PERMUTE_1X, XM_PERMUTE_0Z}; |
||
| 435 | static CONST XMVECTORU32 Permute0W1Y0Y0Z = {XM_PERMUTE_0W, XM_PERMUTE_1Y, XM_PERMUTE_0Y, XM_PERMUTE_0Z}; |
||
| 436 | static CONST XMVECTORU32 Permute0Z0Y1X0X = {XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_1X, XM_PERMUTE_0X}; |
||
| 437 | static CONST XMVECTORU32 Permute1Y0X0W1X = {XM_PERMUTE_1Y, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_1X}; |
||
| 438 | static CONST XMVECTORU32 Permute1W0Y0W0X = {XM_PERMUTE_1W, XM_PERMUTE_0Y, XM_PERMUTE_0W, XM_PERMUTE_0X}; |
||
| 439 | static CONST XMVECTORU32 Permute0W0X0Y1Z = {XM_PERMUTE_0W, XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_1Z}; |
||
| 440 | static CONST XMVECTORU32 Permute0Z1W1Z0Z = {XM_PERMUTE_0Z, XM_PERMUTE_1W, XM_PERMUTE_1Z, XM_PERMUTE_0Z}; |
||
| 441 | static CONST XMVECTORU32 Permute0W1W0Y0Z = {XM_PERMUTE_0W, XM_PERMUTE_1W, XM_PERMUTE_0Y, XM_PERMUTE_0Z}; |
||
| 442 | static CONST XMVECTORU32 Permute0Z0Y1Z0X = {XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_1Z, XM_PERMUTE_0X}; |
||
| 443 | static CONST XMVECTORU32 Permute1W0X0W1Z = {XM_PERMUTE_1W, XM_PERMUTE_0X, XM_PERMUTE_0W, XM_PERMUTE_1Z}; |
||
| 444 | |||
| 445 | XMASSERT(pDeterminant); |
||
| 446 | |||
| 447 | MT = XMMatrixTranspose(M); |
||
| 448 | |||
| 449 | V0[0] = XMVectorPermute(MT.r[2], MT.r[2], SwizzleXXYY.v); |
||
| 450 | V1[0] = XMVectorPermute(MT.r[3], MT.r[3], SwizzleZWZW.v); |
||
| 451 | V0[1] = XMVectorPermute(MT.r[0], MT.r[0], SwizzleXXYY.v); |
||
| 452 | V1[1] = XMVectorPermute(MT.r[1], MT.r[1], SwizzleZWZW.v); |
||
| 453 | V0[2] = XMVectorPermute(MT.r[2], MT.r[0], Permute0X0Z1X1Z.v); |
||
| 454 | V1[2] = XMVectorPermute(MT.r[3], MT.r[1], Permute0Y0W1Y1W.v); |
||
| 455 | |||
| 456 | D0 = XMVectorMultiply(V0[0], V1[0]); |
||
| 457 | D1 = XMVectorMultiply(V0[1], V1[1]); |
||
| 458 | D2 = XMVectorMultiply(V0[2], V1[2]); |
||
| 459 | |||
| 460 | V0[0] = XMVectorPermute(MT.r[2], MT.r[2], SwizzleZWZW.v); |
||
| 461 | V1[0] = XMVectorPermute(MT.r[3], MT.r[3], SwizzleXXYY.v); |
||
| 462 | V0[1] = XMVectorPermute(MT.r[0], MT.r[0], SwizzleZWZW.v); |
||
| 463 | V1[1] = XMVectorPermute(MT.r[1], MT.r[1], SwizzleXXYY.v); |
||
| 464 | V0[2] = XMVectorPermute(MT.r[2], MT.r[0], Permute0Y0W1Y1W.v); |
||
| 465 | V1[2] = XMVectorPermute(MT.r[3], MT.r[1], Permute0X0Z1X1Z.v); |
||
| 466 | |||
| 467 | D0 = XMVectorNegativeMultiplySubtract(V0[0], V1[0], D0); |
||
| 468 | D1 = XMVectorNegativeMultiplySubtract(V0[1], V1[1], D1); |
||
| 469 | D2 = XMVectorNegativeMultiplySubtract(V0[2], V1[2], D2); |
||
| 470 | |||
| 471 | V0[0] = XMVectorPermute(MT.r[1], MT.r[1], SwizzleYZXY.v); |
||
| 472 | V1[0] = XMVectorPermute(D0, D2, Permute1Y0Y0W0X.v); |
||
| 473 | V0[1] = XMVectorPermute(MT.r[0], MT.r[0], SwizzleZXYX.v); |
||
| 474 | V1[1] = XMVectorPermute(D0, D2, Permute0W1Y0Y0Z.v); |
||
| 475 | V0[2] = XMVectorPermute(MT.r[3], MT.r[3], SwizzleYZXY.v); |
||
| 476 | V1[2] = XMVectorPermute(D1, D2, Permute1W0Y0W0X.v); |
||
| 477 | V0[3] = XMVectorPermute(MT.r[2], MT.r[2], SwizzleZXYX.v); |
||
| 478 | V1[3] = XMVectorPermute(D1, D2, Permute0W1W0Y0Z.v); |
||
| 479 | |||
| 480 | C0 = XMVectorMultiply(V0[0], V1[0]); |
||
| 481 | C2 = XMVectorMultiply(V0[1], V1[1]); |
||
| 482 | C4 = XMVectorMultiply(V0[2], V1[2]); |
||
| 483 | C6 = XMVectorMultiply(V0[3], V1[3]); |
||
| 484 | |||
| 485 | V0[0] = XMVectorPermute(MT.r[1], MT.r[1], SwizzleZWYZ.v); |
||
| 486 | V1[0] = XMVectorPermute(D0, D2, Permute0W0X0Y1X.v); |
||
| 487 | V0[1] = XMVectorPermute(MT.r[0], MT.r[0], SwizzleWZWY.v); |
||
| 488 | V1[1] = XMVectorPermute(D0, D2, Permute0Z0Y1X0X.v); |
||
| 489 | V0[2] = XMVectorPermute(MT.r[3], MT.r[3], SwizzleZWYZ.v); |
||
| 490 | V1[2] = XMVectorPermute(D1, D2, Permute0W0X0Y1Z.v); |
||
| 491 | V0[3] = XMVectorPermute(MT.r[2], MT.r[2], SwizzleWZWY.v); |
||
| 492 | V1[3] = XMVectorPermute(D1, D2, Permute0Z0Y1Z0X.v); |
||
| 493 | |||
| 494 | C0 = XMVectorNegativeMultiplySubtract(V0[0], V1[0], C0); |
||
| 495 | C2 = XMVectorNegativeMultiplySubtract(V0[1], V1[1], C2); |
||
| 496 | C4 = XMVectorNegativeMultiplySubtract(V0[2], V1[2], C4); |
||
| 497 | C6 = XMVectorNegativeMultiplySubtract(V0[3], V1[3], C6); |
||
| 498 | |||
| 499 | V0[0] = XMVectorPermute(MT.r[1], MT.r[1], SwizzleWXWX.v); |
||
| 500 | V1[0] = XMVectorPermute(D0, D2, Permute0Z1Y1X0Z.v); |
||
| 501 | V0[1] = XMVectorPermute(MT.r[0], MT.r[0], SwizzleYWXZ.v); |
||
| 502 | V1[1] = XMVectorPermute(D0, D2, Permute1Y0X0W1X.v); |
||
| 503 | V0[2] = XMVectorPermute(MT.r[3], MT.r[3], SwizzleWXWX.v); |
||
| 504 | V1[2] = XMVectorPermute(D1, D2, Permute0Z1W1Z0Z.v); |
||
| 505 | V0[3] = XMVectorPermute(MT.r[2], MT.r[2], SwizzleYWXZ.v); |
||
| 506 | V1[3] = XMVectorPermute(D1, D2, Permute1W0X0W1Z.v); |
||
| 507 | |||
| 508 | C1 = XMVectorNegativeMultiplySubtract(V0[0], V1[0], C0); |
||
| 509 | C0 = XMVectorMultiplyAdd(V0[0], V1[0], C0); |
||
| 510 | C3 = XMVectorMultiplyAdd(V0[1], V1[1], C2); |
||
| 511 | C2 = XMVectorNegativeMultiplySubtract(V0[1], V1[1], C2); |
||
| 512 | C5 = XMVectorNegativeMultiplySubtract(V0[2], V1[2], C4); |
||
| 513 | C4 = XMVectorMultiplyAdd(V0[2], V1[2], C4); |
||
| 514 | C7 = XMVectorMultiplyAdd(V0[3], V1[3], C6); |
||
| 515 | C6 = XMVectorNegativeMultiplySubtract(V0[3], V1[3], C6); |
||
| 516 | |||
| 517 | R.r[0] = XMVectorSelect(C0, C1, g_XMSelect0101.v); |
||
| 518 | R.r[1] = XMVectorSelect(C2, C3, g_XMSelect0101.v); |
||
| 519 | R.r[2] = XMVectorSelect(C4, C5, g_XMSelect0101.v); |
||
| 520 | R.r[3] = XMVectorSelect(C6, C7, g_XMSelect0101.v); |
||
| 521 | |||
| 522 | Determinant = XMVector4Dot(R.r[0], MT.r[0]); |
||
| 523 | |||
| 524 | *pDeterminant = Determinant; |
||
| 525 | |||
| 526 | Reciprocal = XMVectorReciprocal(Determinant); |
||
| 527 | |||
| 528 | Result.r[0] = XMVectorMultiply(R.r[0], Reciprocal); |
||
| 529 | Result.r[1] = XMVectorMultiply(R.r[1], Reciprocal); |
||
| 530 | Result.r[2] = XMVectorMultiply(R.r[2], Reciprocal); |
||
| 531 | Result.r[3] = XMVectorMultiply(R.r[3], Reciprocal); |
||
| 532 | |||
| 533 | return Result; |
||
| 534 | |||
| 535 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 536 | XMASSERT(pDeterminant); |
||
| 537 | XMMATRIX MT = XMMatrixTranspose(M); |
||
| 538 | XMVECTOR V00 = _mm_shuffle_ps(MT.r[2], MT.r[2],_MM_SHUFFLE(1,1,0,0)); |
||
| 539 | XMVECTOR V10 = _mm_shuffle_ps(MT.r[3], MT.r[3],_MM_SHUFFLE(3,2,3,2)); |
||
| 540 | XMVECTOR V01 = _mm_shuffle_ps(MT.r[0], MT.r[0],_MM_SHUFFLE(1,1,0,0)); |
||
| 541 | XMVECTOR V11 = _mm_shuffle_ps(MT.r[1], MT.r[1],_MM_SHUFFLE(3,2,3,2)); |
||
| 542 | XMVECTOR V02 = _mm_shuffle_ps(MT.r[2], MT.r[0],_MM_SHUFFLE(2,0,2,0)); |
||
| 543 | XMVECTOR V12 = _mm_shuffle_ps(MT.r[3], MT.r[1],_MM_SHUFFLE(3,1,3,1)); |
||
| 544 | |||
| 545 | XMVECTOR D0 = _mm_mul_ps(V00,V10); |
||
| 546 | XMVECTOR D1 = _mm_mul_ps(V01,V11); |
||
| 547 | XMVECTOR D2 = _mm_mul_ps(V02,V12); |
||
| 548 | |||
| 549 | V00 = _mm_shuffle_ps(MT.r[2],MT.r[2],_MM_SHUFFLE(3,2,3,2)); |
||
| 550 | V10 = _mm_shuffle_ps(MT.r[3],MT.r[3],_MM_SHUFFLE(1,1,0,0)); |
||
| 551 | V01 = _mm_shuffle_ps(MT.r[0],MT.r[0],_MM_SHUFFLE(3,2,3,2)); |
||
| 552 | V11 = _mm_shuffle_ps(MT.r[1],MT.r[1],_MM_SHUFFLE(1,1,0,0)); |
||
| 553 | V02 = _mm_shuffle_ps(MT.r[2],MT.r[0],_MM_SHUFFLE(3,1,3,1)); |
||
| 554 | V12 = _mm_shuffle_ps(MT.r[3],MT.r[1],_MM_SHUFFLE(2,0,2,0)); |
||
| 555 | |||
| 556 | V00 = _mm_mul_ps(V00,V10); |
||
| 557 | V01 = _mm_mul_ps(V01,V11); |
||
| 558 | V02 = _mm_mul_ps(V02,V12); |
||
| 559 | D0 = _mm_sub_ps(D0,V00); |
||
| 560 | D1 = _mm_sub_ps(D1,V01); |
||
| 561 | D2 = _mm_sub_ps(D2,V02); |
||
| 562 | // V11 = D0Y,D0W,D2Y,D2Y |
||
| 563 | V11 = _mm_shuffle_ps(D0,D2,_MM_SHUFFLE(1,1,3,1)); |
||
| 564 | V00 = _mm_shuffle_ps(MT.r[1], MT.r[1],_MM_SHUFFLE(1,0,2,1)); |
||
| 565 | V10 = _mm_shuffle_ps(V11,D0,_MM_SHUFFLE(0,3,0,2)); |
||
| 566 | V01 = _mm_shuffle_ps(MT.r[0], MT.r[0],_MM_SHUFFLE(0,1,0,2)); |
||
| 567 | V11 = _mm_shuffle_ps(V11,D0,_MM_SHUFFLE(2,1,2,1)); |
||
| 568 | // V13 = D1Y,D1W,D2W,D2W |
||
| 569 | XMVECTOR V13 = _mm_shuffle_ps(D1,D2,_MM_SHUFFLE(3,3,3,1)); |
||
| 570 | V02 = _mm_shuffle_ps(MT.r[3], MT.r[3],_MM_SHUFFLE(1,0,2,1)); |
||
| 571 | V12 = _mm_shuffle_ps(V13,D1,_MM_SHUFFLE(0,3,0,2)); |
||
| 572 | XMVECTOR V03 = _mm_shuffle_ps(MT.r[2], MT.r[2],_MM_SHUFFLE(0,1,0,2)); |
||
| 573 | V13 = _mm_shuffle_ps(V13,D1,_MM_SHUFFLE(2,1,2,1)); |
||
| 574 | |||
| 575 | XMVECTOR C0 = _mm_mul_ps(V00,V10); |
||
| 576 | XMVECTOR C2 = _mm_mul_ps(V01,V11); |
||
| 577 | XMVECTOR C4 = _mm_mul_ps(V02,V12); |
||
| 578 | XMVECTOR C6 = _mm_mul_ps(V03,V13); |
||
| 579 | |||
| 580 | // V11 = D0X,D0Y,D2X,D2X |
||
| 581 | V11 = _mm_shuffle_ps(D0,D2,_MM_SHUFFLE(0,0,1,0)); |
||
| 582 | V00 = _mm_shuffle_ps(MT.r[1], MT.r[1],_MM_SHUFFLE(2,1,3,2)); |
||
| 583 | V10 = _mm_shuffle_ps(D0,V11,_MM_SHUFFLE(2,1,0,3)); |
||
| 584 | V01 = _mm_shuffle_ps(MT.r[0], MT.r[0],_MM_SHUFFLE(1,3,2,3)); |
||
| 585 | V11 = _mm_shuffle_ps(D0,V11,_MM_SHUFFLE(0,2,1,2)); |
||
| 586 | // V13 = D1X,D1Y,D2Z,D2Z |
||
| 587 | V13 = _mm_shuffle_ps(D1,D2,_MM_SHUFFLE(2,2,1,0)); |
||
| 588 | V02 = _mm_shuffle_ps(MT.r[3], MT.r[3],_MM_SHUFFLE(2,1,3,2)); |
||
| 589 | V12 = _mm_shuffle_ps(D1,V13,_MM_SHUFFLE(2,1,0,3)); |
||
| 590 | V03 = _mm_shuffle_ps(MT.r[2], MT.r[2],_MM_SHUFFLE(1,3,2,3)); |
||
| 591 | V13 = _mm_shuffle_ps(D1,V13,_MM_SHUFFLE(0,2,1,2)); |
||
| 592 | |||
| 593 | V00 = _mm_mul_ps(V00,V10); |
||
| 594 | V01 = _mm_mul_ps(V01,V11); |
||
| 595 | V02 = _mm_mul_ps(V02,V12); |
||
| 596 | V03 = _mm_mul_ps(V03,V13); |
||
| 597 | C0 = _mm_sub_ps(C0,V00); |
||
| 598 | C2 = _mm_sub_ps(C2,V01); |
||
| 599 | C4 = _mm_sub_ps(C4,V02); |
||
| 600 | C6 = _mm_sub_ps(C6,V03); |
||
| 601 | |||
| 602 | V00 = _mm_shuffle_ps(MT.r[1],MT.r[1],_MM_SHUFFLE(0,3,0,3)); |
||
| 603 | // V10 = D0Z,D0Z,D2X,D2Y |
||
| 604 | V10 = _mm_shuffle_ps(D0,D2,_MM_SHUFFLE(1,0,2,2)); |
||
| 605 | V10 = _mm_shuffle_ps(V10,V10,_MM_SHUFFLE(0,2,3,0)); |
||
| 606 | V01 = _mm_shuffle_ps(MT.r[0],MT.r[0],_MM_SHUFFLE(2,0,3,1)); |
||
| 607 | // V11 = D0X,D0W,D2X,D2Y |
||
| 608 | V11 = _mm_shuffle_ps(D0,D2,_MM_SHUFFLE(1,0,3,0)); |
||
| 609 | V11 = _mm_shuffle_ps(V11,V11,_MM_SHUFFLE(2,1,0,3)); |
||
| 610 | V02 = _mm_shuffle_ps(MT.r[3],MT.r[3],_MM_SHUFFLE(0,3,0,3)); |
||
| 611 | // V12 = D1Z,D1Z,D2Z,D2W |
||
| 612 | V12 = _mm_shuffle_ps(D1,D2,_MM_SHUFFLE(3,2,2,2)); |
||
| 613 | V12 = _mm_shuffle_ps(V12,V12,_MM_SHUFFLE(0,2,3,0)); |
||
| 614 | V03 = _mm_shuffle_ps(MT.r[2],MT.r[2],_MM_SHUFFLE(2,0,3,1)); |
||
| 615 | // V13 = D1X,D1W,D2Z,D2W |
||
| 616 | V13 = _mm_shuffle_ps(D1,D2,_MM_SHUFFLE(3,2,3,0)); |
||
| 617 | V13 = _mm_shuffle_ps(V13,V13,_MM_SHUFFLE(2,1,0,3)); |
||
| 618 | |||
| 619 | V00 = _mm_mul_ps(V00,V10); |
||
| 620 | V01 = _mm_mul_ps(V01,V11); |
||
| 621 | V02 = _mm_mul_ps(V02,V12); |
||
| 622 | V03 = _mm_mul_ps(V03,V13); |
||
| 623 | XMVECTOR C1 = _mm_sub_ps(C0,V00); |
||
| 624 | C0 = _mm_add_ps(C0,V00); |
||
| 625 | XMVECTOR C3 = _mm_add_ps(C2,V01); |
||
| 626 | C2 = _mm_sub_ps(C2,V01); |
||
| 627 | XMVECTOR C5 = _mm_sub_ps(C4,V02); |
||
| 628 | C4 = _mm_add_ps(C4,V02); |
||
| 629 | XMVECTOR C7 = _mm_add_ps(C6,V03); |
||
| 630 | C6 = _mm_sub_ps(C6,V03); |
||
| 631 | |||
| 632 | C0 = _mm_shuffle_ps(C0,C1,_MM_SHUFFLE(3,1,2,0)); |
||
| 633 | C2 = _mm_shuffle_ps(C2,C3,_MM_SHUFFLE(3,1,2,0)); |
||
| 634 | C4 = _mm_shuffle_ps(C4,C5,_MM_SHUFFLE(3,1,2,0)); |
||
| 635 | C6 = _mm_shuffle_ps(C6,C7,_MM_SHUFFLE(3,1,2,0)); |
||
| 636 | C0 = _mm_shuffle_ps(C0,C0,_MM_SHUFFLE(3,1,2,0)); |
||
| 637 | C2 = _mm_shuffle_ps(C2,C2,_MM_SHUFFLE(3,1,2,0)); |
||
| 638 | C4 = _mm_shuffle_ps(C4,C4,_MM_SHUFFLE(3,1,2,0)); |
||
| 639 | C6 = _mm_shuffle_ps(C6,C6,_MM_SHUFFLE(3,1,2,0)); |
||
| 640 | // Get the determinate |
||
| 641 | XMVECTOR vTemp = XMVector4Dot(C0,MT.r[0]); |
||
| 642 | *pDeterminant = vTemp; |
||
| 643 | vTemp = _mm_div_ps(g_XMOne,vTemp); |
||
| 644 | XMMATRIX mResult; |
||
| 645 | mResult.r[0] = _mm_mul_ps(C0,vTemp); |
||
| 646 | mResult.r[1] = _mm_mul_ps(C2,vTemp); |
||
| 647 | mResult.r[2] = _mm_mul_ps(C4,vTemp); |
||
| 648 | mResult.r[3] = _mm_mul_ps(C6,vTemp); |
||
| 649 | return mResult; |
||
| 650 | #else // _XM_VMX128_INTRINSICS_ |
||
| 651 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 652 | } |
||
| 653 | |||
| 654 | //------------------------------------------------------------------------------ |
||
| 655 | |||
| 656 | XMINLINE XMVECTOR XMMatrixDeterminant |
||
| 657 | ( |
||
| 658 | CXMMATRIX M |
||
| 659 | ) |
||
| 660 | { |
||
| 661 | #if defined(_XM_NO_INTRINSICS_) |
||
| 662 | |||
| 663 | XMVECTOR V0, V1, V2, V3, V4, V5; |
||
| 664 | XMVECTOR P0, P1, P2, R, S; |
||
| 665 | XMVECTOR Result; |
||
| 666 | static CONST XMVECTORU32 SwizzleYXXX = {XM_PERMUTE_0Y, XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_0X}; |
||
| 667 | static CONST XMVECTORU32 SwizzleZZYY = {XM_PERMUTE_0Z, XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_0Y}; |
||
| 668 | static CONST XMVECTORU32 SwizzleWWWZ = {XM_PERMUTE_0W, XM_PERMUTE_0W, XM_PERMUTE_0W, XM_PERMUTE_0Z}; |
||
| 669 | static CONST XMVECTOR Sign = {1.0f, -1.0f, 1.0f, -1.0f}; |
||
| 670 | |||
| 671 | V0 = XMVectorPermute(M.r[2], M.r[2], SwizzleYXXX.v); |
||
| 672 | V1 = XMVectorPermute(M.r[3], M.r[3], SwizzleZZYY.v); |
||
| 673 | V2 = XMVectorPermute(M.r[2], M.r[2], SwizzleYXXX.v); |
||
| 674 | V3 = XMVectorPermute(M.r[3], M.r[3], SwizzleWWWZ.v); |
||
| 675 | V4 = XMVectorPermute(M.r[2], M.r[2], SwizzleZZYY.v); |
||
| 676 | V5 = XMVectorPermute(M.r[3], M.r[3], SwizzleWWWZ.v); |
||
| 677 | |||
| 678 | P0 = XMVectorMultiply(V0, V1); |
||
| 679 | P1 = XMVectorMultiply(V2, V3); |
||
| 680 | P2 = XMVectorMultiply(V4, V5); |
||
| 681 | |||
| 682 | V0 = XMVectorPermute(M.r[2], M.r[2], SwizzleZZYY.v); |
||
| 683 | V1 = XMVectorPermute(M.r[3], M.r[3], SwizzleYXXX.v); |
||
| 684 | V2 = XMVectorPermute(M.r[2], M.r[2], SwizzleWWWZ.v); |
||
| 685 | V3 = XMVectorPermute(M.r[3], M.r[3], SwizzleYXXX.v); |
||
| 686 | V4 = XMVectorPermute(M.r[2], M.r[2], SwizzleWWWZ.v); |
||
| 687 | V5 = XMVectorPermute(M.r[3], M.r[3], SwizzleZZYY.v); |
||
| 688 | |||
| 689 | P0 = XMVectorNegativeMultiplySubtract(V0, V1, P0); |
||
| 690 | P1 = XMVectorNegativeMultiplySubtract(V2, V3, P1); |
||
| 691 | P2 = XMVectorNegativeMultiplySubtract(V4, V5, P2); |
||
| 692 | |||
| 693 | V0 = XMVectorPermute(M.r[1], M.r[1], SwizzleWWWZ.v); |
||
| 694 | V1 = XMVectorPermute(M.r[1], M.r[1], SwizzleZZYY.v); |
||
| 695 | V2 = XMVectorPermute(M.r[1], M.r[1], SwizzleYXXX.v); |
||
| 696 | |||
| 697 | S = XMVectorMultiply(M.r[0], Sign); |
||
| 698 | R = XMVectorMultiply(V0, P0); |
||
| 699 | R = XMVectorNegativeMultiplySubtract(V1, P1, R); |
||
| 700 | R = XMVectorMultiplyAdd(V2, P2, R); |
||
| 701 | |||
| 702 | Result = XMVector4Dot(S, R); |
||
| 703 | |||
| 704 | return Result; |
||
| 705 | |||
| 706 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 707 | XMVECTOR V0, V1, V2, V3, V4, V5; |
||
| 708 | XMVECTOR P0, P1, P2, R, S; |
||
| 709 | XMVECTOR Result; |
||
| 710 | static CONST XMVECTORU32 SwizzleYXXX = {XM_PERMUTE_0Y, XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_0X}; |
||
| 711 | static CONST XMVECTORU32 SwizzleZZYY = {XM_PERMUTE_0Z, XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_0Y}; |
||
| 712 | static CONST XMVECTORU32 SwizzleWWWZ = {XM_PERMUTE_0W, XM_PERMUTE_0W, XM_PERMUTE_0W, XM_PERMUTE_0Z}; |
||
| 713 | static CONST XMVECTORF32 Sign = {1.0f, -1.0f, 1.0f, -1.0f}; |
||
| 714 | |||
| 715 | V0 = XMVectorPermute(M.r[2], M.r[2], SwizzleYXXX); |
||
| 716 | V1 = XMVectorPermute(M.r[3], M.r[3], SwizzleZZYY); |
||
| 717 | V2 = XMVectorPermute(M.r[2], M.r[2], SwizzleYXXX); |
||
| 718 | V3 = XMVectorPermute(M.r[3], M.r[3], SwizzleWWWZ); |
||
| 719 | V4 = XMVectorPermute(M.r[2], M.r[2], SwizzleZZYY); |
||
| 720 | V5 = XMVectorPermute(M.r[3], M.r[3], SwizzleWWWZ); |
||
| 721 | |||
| 722 | P0 = _mm_mul_ps(V0, V1); |
||
| 723 | P1 = _mm_mul_ps(V2, V3); |
||
| 724 | P2 = _mm_mul_ps(V4, V5); |
||
| 725 | |||
| 726 | V0 = XMVectorPermute(M.r[2], M.r[2], SwizzleZZYY); |
||
| 727 | V1 = XMVectorPermute(M.r[3], M.r[3], SwizzleYXXX); |
||
| 728 | V2 = XMVectorPermute(M.r[2], M.r[2], SwizzleWWWZ); |
||
| 729 | V3 = XMVectorPermute(M.r[3], M.r[3], SwizzleYXXX); |
||
| 730 | V4 = XMVectorPermute(M.r[2], M.r[2], SwizzleWWWZ); |
||
| 731 | V5 = XMVectorPermute(M.r[3], M.r[3], SwizzleZZYY); |
||
| 732 | |||
| 733 | P0 = XMVectorNegativeMultiplySubtract(V0, V1, P0); |
||
| 734 | P1 = XMVectorNegativeMultiplySubtract(V2, V3, P1); |
||
| 735 | P2 = XMVectorNegativeMultiplySubtract(V4, V5, P2); |
||
| 736 | |||
| 737 | V0 = XMVectorPermute(M.r[1], M.r[1], SwizzleWWWZ); |
||
| 738 | V1 = XMVectorPermute(M.r[1], M.r[1], SwizzleZZYY); |
||
| 739 | V2 = XMVectorPermute(M.r[1], M.r[1], SwizzleYXXX); |
||
| 740 | |||
| 741 | S = _mm_mul_ps(M.r[0], Sign); |
||
| 742 | R = _mm_mul_ps(V0, P0); |
||
| 743 | R = XMVectorNegativeMultiplySubtract(V1, P1, R); |
||
| 744 | R = XMVectorMultiplyAdd(V2, P2, R); |
||
| 745 | |||
| 746 | Result = XMVector4Dot(S, R); |
||
| 747 | |||
| 748 | return Result; |
||
| 749 | |||
| 750 | #else // _XM_VMX128_INTRINSICS_ |
||
| 751 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 752 | } |
||
| 753 | |||
| 754 | #define XMRANKDECOMPOSE(a, b, c, x, y, z) \ |
||
| 755 | if((x) < (y)) \ |
||
| 756 | { \ |
||
| 757 | if((y) < (z)) \ |
||
| 758 | { \ |
||
| 759 | (a) = 2; \ |
||
| 760 | (b) = 1; \ |
||
| 761 | (c) = 0; \ |
||
| 762 | } \ |
||
| 763 | else \ |
||
| 764 | { \ |
||
| 765 | (a) = 1; \ |
||
| 766 | \ |
||
| 767 | if((x) < (z)) \ |
||
| 768 | { \ |
||
| 769 | (b) = 2; \ |
||
| 770 | (c) = 0; \ |
||
| 771 | } \ |
||
| 772 | else \ |
||
| 773 | { \ |
||
| 774 | (b) = 0; \ |
||
| 775 | (c) = 2; \ |
||
| 776 | } \ |
||
| 777 | } \ |
||
| 778 | } \ |
||
| 779 | else \ |
||
| 780 | { \ |
||
| 781 | if((x) < (z)) \ |
||
| 782 | { \ |
||
| 783 | (a) = 2; \ |
||
| 784 | (b) = 0; \ |
||
| 785 | (c) = 1; \ |
||
| 786 | } \ |
||
| 787 | else \ |
||
| 788 | { \ |
||
| 789 | (a) = 0; \ |
||
| 790 | \ |
||
| 791 | if((y) < (z)) \ |
||
| 792 | { \ |
||
| 793 | (b) = 2; \ |
||
| 794 | (c) = 1; \ |
||
| 795 | } \ |
||
| 796 | else \ |
||
| 797 | { \ |
||
| 798 | (b) = 1; \ |
||
| 799 | (c) = 2; \ |
||
| 800 | } \ |
||
| 801 | } \ |
||
| 802 | } |
||
| 803 | |||
| 804 | #define XM_DECOMP_EPSILON 0.0001f |
||
| 805 | |||
| 806 | XMINLINE BOOL XMMatrixDecompose( XMVECTOR *outScale, XMVECTOR *outRotQuat, XMVECTOR *outTrans, CXMMATRIX M ) |
||
| 807 | { |
||
| 808 | FLOAT fDet; |
||
| 809 | FLOAT *pfScales; |
||
| 810 | XMVECTOR *ppvBasis[3]; |
||
| 811 | XMMATRIX matTemp; |
||
| 812 | UINT a, b, c; |
||
| 813 | static const XMVECTOR *pvCanonicalBasis[3] = { |
||
| 814 | &g_XMIdentityR0.v, |
||
| 815 | &g_XMIdentityR1.v, |
||
| 816 | &g_XMIdentityR2.v |
||
| 817 | }; |
||
| 818 | |||
| 819 | // Get the translation |
||
| 820 | outTrans[0] = M.r[3]; |
||
| 821 | |||
| 822 | ppvBasis[0] = &matTemp.r[0]; |
||
| 823 | ppvBasis[1] = &matTemp.r[1]; |
||
| 824 | ppvBasis[2] = &matTemp.r[2]; |
||
| 825 | |||
| 826 | matTemp.r[0] = M.r[0]; |
||
| 827 | matTemp.r[1] = M.r[1]; |
||
| 828 | matTemp.r[2] = M.r[2]; |
||
| 829 | matTemp.r[3] = g_XMIdentityR3.v; |
||
| 830 | |||
| 831 | pfScales = (FLOAT *)outScale; |
||
| 832 | |||
| 833 | XMVectorGetXPtr(&pfScales[0],XMVector3Length(ppvBasis[0][0])); |
||
| 834 | XMVectorGetXPtr(&pfScales[1],XMVector3Length(ppvBasis[1][0])); |
||
| 835 | XMVectorGetXPtr(&pfScales[2],XMVector3Length(ppvBasis[2][0])); |
||
| 836 | |||
| 837 | XMRANKDECOMPOSE(a, b, c, pfScales[0], pfScales[1], pfScales[2]) |
||
| 838 | |||
| 839 | if(pfScales[a] < XM_DECOMP_EPSILON) |
||
| 840 | { |
||
| 841 | ppvBasis[a][0] = pvCanonicalBasis[a][0]; |
||
| 842 | } |
||
| 843 | ppvBasis[a][0] = XMVector3Normalize(ppvBasis[a][0]); |
||
| 844 | |||
| 845 | if(pfScales[b] < XM_DECOMP_EPSILON) |
||
| 846 | { |
||
| 847 | UINT aa, bb, cc; |
||
| 848 | FLOAT fAbsX, fAbsY, fAbsZ; |
||
| 849 | |||
| 850 | fAbsX = fabsf(XMVectorGetX(ppvBasis[a][0])); |
||
| 851 | fAbsY = fabsf(XMVectorGetY(ppvBasis[a][0])); |
||
| 852 | fAbsZ = fabsf(XMVectorGetZ(ppvBasis[a][0])); |
||
| 853 | |||
| 854 | XMRANKDECOMPOSE(aa, bb, cc, fAbsX, fAbsY, fAbsZ) |
||
| 855 | |||
| 856 | ppvBasis[b][0] = XMVector3Cross(ppvBasis[a][0],pvCanonicalBasis[cc][0]); |
||
| 857 | } |
||
| 858 | |||
| 859 | ppvBasis[b][0] = XMVector3Normalize(ppvBasis[b][0]); |
||
| 860 | |||
| 861 | if(pfScales[c] < XM_DECOMP_EPSILON) |
||
| 862 | { |
||
| 863 | ppvBasis[c][0] = XMVector3Cross(ppvBasis[a][0],ppvBasis[b][0]); |
||
| 864 | } |
||
| 865 | |||
| 866 | ppvBasis[c][0] = XMVector3Normalize(ppvBasis[c][0]); |
||
| 867 | |||
| 868 | fDet = XMVectorGetX(XMMatrixDeterminant(matTemp)); |
||
| 869 | |||
| 870 | // use Kramer's rule to check for handedness of coordinate system |
||
| 871 | if(fDet < 0.0f) |
||
| 872 | { |
||
| 873 | // switch coordinate system by negating the scale and inverting the basis vector on the x-axis |
||
| 874 | pfScales[a] = -pfScales[a]; |
||
| 875 | ppvBasis[a][0] = XMVectorNegate(ppvBasis[a][0]); |
||
| 876 | |||
| 877 | fDet = -fDet; |
||
| 878 | } |
||
| 879 | |||
| 880 | fDet -= 1.0f; |
||
| 881 | fDet *= fDet; |
||
| 882 | |||
| 883 | if(XM_DECOMP_EPSILON < fDet) |
||
| 884 | { |
||
| 885 | // Non-SRT matrix encountered |
||
| 886 | return FALSE; |
||
| 887 | } |
||
| 888 | |||
| 889 | // generate the quaternion from the matrix |
||
| 890 | outRotQuat[0] = XMQuaternionRotationMatrix(matTemp); |
||
| 891 | return TRUE; |
||
| 892 | } |
||
| 893 | |||
| 894 | //------------------------------------------------------------------------------ |
||
| 895 | // Transformation operations |
||
| 896 | //------------------------------------------------------------------------------ |
||
| 897 | |||
| 898 | //------------------------------------------------------------------------------ |
||
| 899 | |||
| 900 | XMFINLINE XMMATRIX XMMatrixIdentity() |
||
| 901 | { |
||
| 902 | #if defined(_XM_NO_INTRINSICS_) |
||
| 903 | |||
| 904 | XMMATRIX M; |
||
| 905 | M.r[0] = g_XMIdentityR0.v; |
||
| 906 | M.r[1] = g_XMIdentityR1.v; |
||
| 907 | M.r[2] = g_XMIdentityR2.v; |
||
| 908 | M.r[3] = g_XMIdentityR3.v; |
||
| 909 | return M; |
||
| 910 | |||
| 911 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 912 | XMMATRIX M; |
||
| 913 | M.r[0] = g_XMIdentityR0; |
||
| 914 | M.r[1] = g_XMIdentityR1; |
||
| 915 | M.r[2] = g_XMIdentityR2; |
||
| 916 | M.r[3] = g_XMIdentityR3; |
||
| 917 | return M; |
||
| 918 | #else // _XM_VMX128_INTRINSICS_ |
||
| 919 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 920 | } |
||
| 921 | |||
| 922 | //------------------------------------------------------------------------------ |
||
| 923 | |||
| 924 | XMFINLINE XMMATRIX XMMatrixSet |
||
| 925 | ( |
||
| 926 | FLOAT m00, FLOAT m01, FLOAT m02, FLOAT m03, |
||
| 927 | FLOAT m10, FLOAT m11, FLOAT m12, FLOAT m13, |
||
| 928 | FLOAT m20, FLOAT m21, FLOAT m22, FLOAT m23, |
||
| 929 | FLOAT m30, FLOAT m31, FLOAT m32, FLOAT m33 |
||
| 930 | ) |
||
| 931 | { |
||
| 932 | XMMATRIX M; |
||
| 933 | |||
| 934 | M.r[0] = XMVectorSet(m00, m01, m02, m03); |
||
| 935 | M.r[1] = XMVectorSet(m10, m11, m12, m13); |
||
| 936 | M.r[2] = XMVectorSet(m20, m21, m22, m23); |
||
| 937 | M.r[3] = XMVectorSet(m30, m31, m32, m33); |
||
| 938 | |||
| 939 | return M; |
||
| 940 | } |
||
| 941 | |||
| 942 | //------------------------------------------------------------------------------ |
||
| 943 | |||
| 944 | XMFINLINE XMMATRIX XMMatrixTranslation |
||
| 945 | ( |
||
| 946 | FLOAT OffsetX, |
||
| 947 | FLOAT OffsetY, |
||
| 948 | FLOAT OffsetZ |
||
| 949 | ) |
||
| 950 | { |
||
| 951 | #if defined(_XM_NO_INTRINSICS_) |
||
| 952 | |||
| 953 | XMMATRIX M; |
||
| 954 | |||
| 955 | M.m[0][0] = 1.0f; |
||
| 956 | M.m[0][1] = 0.0f; |
||
| 957 | M.m[0][2] = 0.0f; |
||
| 958 | M.m[0][3] = 0.0f; |
||
| 959 | |||
| 960 | M.m[1][0] = 0.0f; |
||
| 961 | M.m[1][1] = 1.0f; |
||
| 962 | M.m[1][2] = 0.0f; |
||
| 963 | M.m[1][3] = 0.0f; |
||
| 964 | |||
| 965 | M.m[2][0] = 0.0f; |
||
| 966 | M.m[2][1] = 0.0f; |
||
| 967 | M.m[2][2] = 1.0f; |
||
| 968 | M.m[2][3] = 0.0f; |
||
| 969 | |||
| 970 | M.m[3][0] = OffsetX; |
||
| 971 | M.m[3][1] = OffsetY; |
||
| 972 | M.m[3][2] = OffsetZ; |
||
| 973 | M.m[3][3] = 1.0f; |
||
| 974 | return M; |
||
| 975 | |||
| 976 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 977 | XMMATRIX M; |
||
| 978 | M.r[0] = g_XMIdentityR0; |
||
| 979 | M.r[1] = g_XMIdentityR1; |
||
| 980 | M.r[2] = g_XMIdentityR2; |
||
| 981 | M.r[3] = _mm_set_ps(1.0f,OffsetZ,OffsetY,OffsetX); |
||
| 982 | return M; |
||
| 983 | #else // _XM_VMX128_INTRINSICS_ |
||
| 984 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 985 | } |
||
| 986 | |||
| 987 | |||
| 988 | //------------------------------------------------------------------------------ |
||
| 989 | |||
| 990 | XMFINLINE XMMATRIX XMMatrixTranslationFromVector |
||
| 991 | ( |
||
| 992 | FXMVECTOR Offset |
||
| 993 | ) |
||
| 994 | { |
||
| 995 | #if defined(_XM_NO_INTRINSICS_) |
||
| 996 | |||
| 997 | XMMATRIX M; |
||
| 998 | M.m[0][0] = 1.0f; |
||
| 999 | M.m[0][1] = 0.0f; |
||
| 1000 | M.m[0][2] = 0.0f; |
||
| 1001 | M.m[0][3] = 0.0f; |
||
| 1002 | |||
| 1003 | M.m[1][0] = 0.0f; |
||
| 1004 | M.m[1][1] = 1.0f; |
||
| 1005 | M.m[1][2] = 0.0f; |
||
| 1006 | M.m[1][3] = 0.0f; |
||
| 1007 | |||
| 1008 | M.m[2][0] = 0.0f; |
||
| 1009 | M.m[2][1] = 0.0f; |
||
| 1010 | M.m[2][2] = 1.0f; |
||
| 1011 | M.m[2][3] = 0.0f; |
||
| 1012 | |||
| 1013 | M.m[3][0] = Offset.vector4_f32[0]; |
||
| 1014 | M.m[3][1] = Offset.vector4_f32[1]; |
||
| 1015 | M.m[3][2] = Offset.vector4_f32[2]; |
||
| 1016 | M.m[3][3] = 1.0f; |
||
| 1017 | return M; |
||
| 1018 | |||
| 1019 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1020 | XMVECTOR vTemp = _mm_and_ps(Offset,g_XMMask3); |
||
| 1021 | vTemp = _mm_or_ps(vTemp,g_XMIdentityR3); |
||
| 1022 | XMMATRIX M; |
||
| 1023 | M.r[0] = g_XMIdentityR0; |
||
| 1024 | M.r[1] = g_XMIdentityR1; |
||
| 1025 | M.r[2] = g_XMIdentityR2; |
||
| 1026 | M.r[3] = vTemp; |
||
| 1027 | return M; |
||
| 1028 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1029 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1030 | } |
||
| 1031 | |||
| 1032 | //------------------------------------------------------------------------------ |
||
| 1033 | |||
| 1034 | XMFINLINE XMMATRIX XMMatrixScaling |
||
| 1035 | ( |
||
| 1036 | FLOAT ScaleX, |
||
| 1037 | FLOAT ScaleY, |
||
| 1038 | FLOAT ScaleZ |
||
| 1039 | ) |
||
| 1040 | { |
||
| 1041 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1042 | |||
| 1043 | XMMATRIX M; |
||
| 1044 | |||
| 1045 | M.r[0] = XMVectorSet(ScaleX, 0.0f, 0.0f, 0.0f); |
||
| 1046 | M.r[1] = XMVectorSet(0.0f, ScaleY, 0.0f, 0.0f); |
||
| 1047 | M.r[2] = XMVectorSet(0.0f, 0.0f, ScaleZ, 0.0f); |
||
| 1048 | |||
| 1049 | M.r[3] = g_XMIdentityR3.v; |
||
| 1050 | |||
| 1051 | return M; |
||
| 1052 | |||
| 1053 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1054 | XMMATRIX M; |
||
| 1055 | M.r[0] = _mm_set_ps( 0, 0, 0, ScaleX ); |
||
| 1056 | M.r[1] = _mm_set_ps( 0, 0, ScaleY, 0 ); |
||
| 1057 | M.r[2] = _mm_set_ps( 0, ScaleZ, 0, 0 ); |
||
| 1058 | M.r[3] = g_XMIdentityR3; |
||
| 1059 | return M; |
||
| 1060 | #elif defined(XM_NO_MISALIGNED_VECTOR_ACCESS) |
||
| 1061 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1062 | } |
||
| 1063 | |||
| 1064 | //------------------------------------------------------------------------------ |
||
| 1065 | |||
| 1066 | XMFINLINE XMMATRIX XMMatrixScalingFromVector |
||
| 1067 | ( |
||
| 1068 | FXMVECTOR Scale |
||
| 1069 | ) |
||
| 1070 | { |
||
| 1071 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1072 | XMMATRIX M; |
||
| 1073 | M.m[0][0] = Scale.vector4_f32[0]; |
||
| 1074 | M.m[0][1] = 0.0f; |
||
| 1075 | M.m[0][2] = 0.0f; |
||
| 1076 | M.m[0][3] = 0.0f; |
||
| 1077 | |||
| 1078 | M.m[1][0] = 0.0f; |
||
| 1079 | M.m[1][1] = Scale.vector4_f32[1]; |
||
| 1080 | M.m[1][2] = 0.0f; |
||
| 1081 | M.m[1][3] = 0.0f; |
||
| 1082 | |||
| 1083 | M.m[2][0] = 0.0f; |
||
| 1084 | M.m[2][1] = 0.0f; |
||
| 1085 | M.m[2][2] = Scale.vector4_f32[2]; |
||
| 1086 | M.m[2][3] = 0.0f; |
||
| 1087 | |||
| 1088 | M.m[3][0] = 0.0f; |
||
| 1089 | M.m[3][1] = 0.0f; |
||
| 1090 | M.m[3][2] = 0.0f; |
||
| 1091 | M.m[3][3] = 1.0f; |
||
| 1092 | return M; |
||
| 1093 | |||
| 1094 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1095 | XMMATRIX M; |
||
| 1096 | M.r[0] = _mm_and_ps(Scale,g_XMMaskX); |
||
| 1097 | M.r[1] = _mm_and_ps(Scale,g_XMMaskY); |
||
| 1098 | M.r[2] = _mm_and_ps(Scale,g_XMMaskZ); |
||
| 1099 | M.r[3] = g_XMIdentityR3; |
||
| 1100 | return M; |
||
| 1101 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1102 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1103 | } |
||
| 1104 | |||
| 1105 | //------------------------------------------------------------------------------ |
||
| 1106 | |||
| 1107 | XMINLINE XMMATRIX XMMatrixRotationX |
||
| 1108 | ( |
||
| 1109 | FLOAT Angle |
||
| 1110 | ) |
||
| 1111 | { |
||
| 1112 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1113 | XMMATRIX M; |
||
| 1114 | |||
| 1115 | FLOAT fSinAngle = sinf(Angle); |
||
| 1116 | FLOAT fCosAngle = cosf(Angle); |
||
| 1117 | |||
| 1118 | M.m[0][0] = 1.0f; |
||
| 1119 | M.m[0][1] = 0.0f; |
||
| 1120 | M.m[0][2] = 0.0f; |
||
| 1121 | M.m[0][3] = 0.0f; |
||
| 1122 | |||
| 1123 | M.m[1][0] = 0.0f; |
||
| 1124 | M.m[1][1] = fCosAngle; |
||
| 1125 | M.m[1][2] = fSinAngle; |
||
| 1126 | M.m[1][3] = 0.0f; |
||
| 1127 | |||
| 1128 | M.m[2][0] = 0.0f; |
||
| 1129 | M.m[2][1] = -fSinAngle; |
||
| 1130 | M.m[2][2] = fCosAngle; |
||
| 1131 | M.m[2][3] = 0.0f; |
||
| 1132 | |||
| 1133 | M.m[3][0] = 0.0f; |
||
| 1134 | M.m[3][1] = 0.0f; |
||
| 1135 | M.m[3][2] = 0.0f; |
||
| 1136 | M.m[3][3] = 1.0f; |
||
| 1137 | return M; |
||
| 1138 | |||
| 1139 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1140 | FLOAT SinAngle = sinf(Angle); |
||
| 1141 | FLOAT CosAngle = cosf(Angle); |
||
| 1142 | |||
| 1143 | XMVECTOR vSin = _mm_set_ss(SinAngle); |
||
| 1144 | XMVECTOR vCos = _mm_set_ss(CosAngle); |
||
| 1145 | // x = 0,y = cos,z = sin, w = 0 |
||
| 1146 | vCos = _mm_shuffle_ps(vCos,vSin,_MM_SHUFFLE(3,0,0,3)); |
||
| 1147 | XMMATRIX M; |
||
| 1148 | M.r[0] = g_XMIdentityR0; |
||
| 1149 | M.r[1] = vCos; |
||
| 1150 | // x = 0,y = sin,z = cos, w = 0 |
||
| 1151 | vCos = _mm_shuffle_ps(vCos,vCos,_MM_SHUFFLE(3,1,2,0)); |
||
| 1152 | // x = 0,y = -sin,z = cos, w = 0 |
||
| 1153 | vCos = _mm_mul_ps(vCos,g_XMNegateY); |
||
| 1154 | M.r[2] = vCos; |
||
| 1155 | M.r[3] = g_XMIdentityR3; |
||
| 1156 | return M; |
||
| 1157 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1158 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1159 | } |
||
| 1160 | |||
| 1161 | //------------------------------------------------------------------------------ |
||
| 1162 | |||
| 1163 | XMINLINE XMMATRIX XMMatrixRotationY |
||
| 1164 | ( |
||
| 1165 | FLOAT Angle |
||
| 1166 | ) |
||
| 1167 | { |
||
| 1168 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1169 | XMMATRIX M; |
||
| 1170 | |||
| 1171 | FLOAT fSinAngle = sinf(Angle); |
||
| 1172 | FLOAT fCosAngle = cosf(Angle); |
||
| 1173 | |||
| 1174 | M.m[0][0] = fCosAngle; |
||
| 1175 | M.m[0][1] = 0.0f; |
||
| 1176 | M.m[0][2] = -fSinAngle; |
||
| 1177 | M.m[0][3] = 0.0f; |
||
| 1178 | |||
| 1179 | M.m[1][0] = 0.0f; |
||
| 1180 | M.m[1][1] = 1.0f; |
||
| 1181 | M.m[1][2] = 0.0f; |
||
| 1182 | M.m[1][3] = 0.0f; |
||
| 1183 | |||
| 1184 | M.m[2][0] = fSinAngle; |
||
| 1185 | M.m[2][1] = 0.0f; |
||
| 1186 | M.m[2][2] = fCosAngle; |
||
| 1187 | M.m[2][3] = 0.0f; |
||
| 1188 | |||
| 1189 | M.m[3][0] = 0.0f; |
||
| 1190 | M.m[3][1] = 0.0f; |
||
| 1191 | M.m[3][2] = 0.0f; |
||
| 1192 | M.m[3][3] = 1.0f; |
||
| 1193 | return M; |
||
| 1194 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1195 | FLOAT SinAngle = sinf(Angle); |
||
| 1196 | FLOAT CosAngle = cosf(Angle); |
||
| 1197 | |||
| 1198 | XMVECTOR vSin = _mm_set_ss(SinAngle); |
||
| 1199 | XMVECTOR vCos = _mm_set_ss(CosAngle); |
||
| 1200 | // x = sin,y = 0,z = cos, w = 0 |
||
| 1201 | vSin = _mm_shuffle_ps(vSin,vCos,_MM_SHUFFLE(3,0,3,0)); |
||
| 1202 | XMMATRIX M; |
||
| 1203 | M.r[2] = vSin; |
||
| 1204 | M.r[1] = g_XMIdentityR1; |
||
| 1205 | // x = cos,y = 0,z = sin, w = 0 |
||
| 1206 | vSin = _mm_shuffle_ps(vSin,vSin,_MM_SHUFFLE(3,0,1,2)); |
||
| 1207 | // x = cos,y = 0,z = -sin, w = 0 |
||
| 1208 | vSin = _mm_mul_ps(vSin,g_XMNegateZ); |
||
| 1209 | M.r[0] = vSin; |
||
| 1210 | M.r[3] = g_XMIdentityR3; |
||
| 1211 | return M; |
||
| 1212 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1213 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1214 | } |
||
| 1215 | |||
| 1216 | //------------------------------------------------------------------------------ |
||
| 1217 | |||
| 1218 | XMINLINE XMMATRIX XMMatrixRotationZ |
||
| 1219 | ( |
||
| 1220 | FLOAT Angle |
||
| 1221 | ) |
||
| 1222 | { |
||
| 1223 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1224 | XMMATRIX M; |
||
| 1225 | |||
| 1226 | FLOAT fSinAngle = sinf(Angle); |
||
| 1227 | FLOAT fCosAngle = cosf(Angle); |
||
| 1228 | |||
| 1229 | M.m[0][0] = fCosAngle; |
||
| 1230 | M.m[0][1] = fSinAngle; |
||
| 1231 | M.m[0][2] = 0.0f; |
||
| 1232 | M.m[0][3] = 0.0f; |
||
| 1233 | |||
| 1234 | M.m[1][0] = -fSinAngle; |
||
| 1235 | M.m[1][1] = fCosAngle; |
||
| 1236 | M.m[1][2] = 0.0f; |
||
| 1237 | M.m[1][3] = 0.0f; |
||
| 1238 | |||
| 1239 | M.m[2][0] = 0.0f; |
||
| 1240 | M.m[2][1] = 0.0f; |
||
| 1241 | M.m[2][2] = 1.0f; |
||
| 1242 | M.m[2][3] = 0.0f; |
||
| 1243 | |||
| 1244 | M.m[3][0] = 0.0f; |
||
| 1245 | M.m[3][1] = 0.0f; |
||
| 1246 | M.m[3][2] = 0.0f; |
||
| 1247 | M.m[3][3] = 1.0f; |
||
| 1248 | return M; |
||
| 1249 | |||
| 1250 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1251 | FLOAT SinAngle = sinf(Angle); |
||
| 1252 | FLOAT CosAngle = cosf(Angle); |
||
| 1253 | |||
| 1254 | XMVECTOR vSin = _mm_set_ss(SinAngle); |
||
| 1255 | XMVECTOR vCos = _mm_set_ss(CosAngle); |
||
| 1256 | // x = cos,y = sin,z = 0, w = 0 |
||
| 1257 | vCos = _mm_unpacklo_ps(vCos,vSin); |
||
| 1258 | XMMATRIX M; |
||
| 1259 | M.r[0] = vCos; |
||
| 1260 | // x = sin,y = cos,z = 0, w = 0 |
||
| 1261 | vCos = _mm_shuffle_ps(vCos,vCos,_MM_SHUFFLE(3,2,0,1)); |
||
| 1262 | // x = cos,y = -sin,z = 0, w = 0 |
||
| 1263 | vCos = _mm_mul_ps(vCos,g_XMNegateX); |
||
| 1264 | M.r[1] = vCos; |
||
| 1265 | M.r[2] = g_XMIdentityR2; |
||
| 1266 | M.r[3] = g_XMIdentityR3; |
||
| 1267 | return M; |
||
| 1268 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1269 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1270 | } |
||
| 1271 | |||
| 1272 | //------------------------------------------------------------------------------ |
||
| 1273 | |||
| 1274 | XMINLINE XMMATRIX XMMatrixRotationRollPitchYaw |
||
| 1275 | ( |
||
| 1276 | FLOAT Pitch, |
||
| 1277 | FLOAT Yaw, |
||
| 1278 | FLOAT Roll |
||
| 1279 | ) |
||
| 1280 | { |
||
| 1281 | XMVECTOR Angles; |
||
| 1282 | XMMATRIX M; |
||
| 1283 | |||
| 1284 | Angles = XMVectorSet(Pitch, Yaw, Roll, 0.0f); |
||
| 1285 | M = XMMatrixRotationRollPitchYawFromVector(Angles); |
||
| 1286 | |||
| 1287 | return M; |
||
| 1288 | } |
||
| 1289 | |||
| 1290 | //------------------------------------------------------------------------------ |
||
| 1291 | |||
| 1292 | XMINLINE XMMATRIX XMMatrixRotationRollPitchYawFromVector |
||
| 1293 | ( |
||
| 1294 | FXMVECTOR Angles // <Pitch, Yaw, Roll, undefined> |
||
| 1295 | ) |
||
| 1296 | { |
||
| 1297 | XMVECTOR Q; |
||
| 1298 | XMMATRIX M; |
||
| 1299 | |||
| 1300 | Q = XMQuaternionRotationRollPitchYawFromVector(Angles); |
||
| 1301 | M = XMMatrixRotationQuaternion(Q); |
||
| 1302 | |||
| 1303 | return M; |
||
| 1304 | } |
||
| 1305 | |||
| 1306 | //------------------------------------------------------------------------------ |
||
| 1307 | |||
| 1308 | XMINLINE XMMATRIX XMMatrixRotationNormal |
||
| 1309 | ( |
||
| 1310 | FXMVECTOR NormalAxis, |
||
| 1311 | FLOAT Angle |
||
| 1312 | ) |
||
| 1313 | { |
||
| 1314 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1315 | XMVECTOR A; |
||
| 1316 | XMVECTOR N0, N1; |
||
| 1317 | XMVECTOR V0, V1, V2; |
||
| 1318 | XMVECTOR R0, R1, R2; |
||
| 1319 | XMVECTOR C0, C1, C2; |
||
| 1320 | XMMATRIX M; |
||
| 1321 | static CONST XMVECTORU32 SwizzleYZXW = {XM_PERMUTE_0Y, XM_PERMUTE_0Z, XM_PERMUTE_0X, XM_PERMUTE_0W}; |
||
| 1322 | static CONST XMVECTORU32 SwizzleZXYW = {XM_PERMUTE_0Z, XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_0W}; |
||
| 1323 | static CONST XMVECTORU32 Permute0Z1Y1Z0X = {XM_PERMUTE_0Z, XM_PERMUTE_1Y, XM_PERMUTE_1Z, XM_PERMUTE_0X}; |
||
| 1324 | static CONST XMVECTORU32 Permute0Y1X0Y1X = {XM_PERMUTE_0Y, XM_PERMUTE_1X, XM_PERMUTE_0Y, XM_PERMUTE_1X}; |
||
| 1325 | static CONST XMVECTORU32 Permute0X1X1Y0W = {XM_PERMUTE_0X, XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0W}; |
||
| 1326 | static CONST XMVECTORU32 Permute1Z0Y1W0W = {XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_1W, XM_PERMUTE_0W}; |
||
| 1327 | static CONST XMVECTORU32 Permute1X1Y0Z0W = {XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0Z, XM_PERMUTE_0W}; |
||
| 1328 | |||
| 1329 | FLOAT fSinAngle = sinf(Angle); |
||
| 1330 | FLOAT fCosAngle = cosf(Angle); |
||
| 1331 | |||
| 1332 | A = XMVectorSet(fSinAngle, fCosAngle, 1.0f - fCosAngle, 0.0f); |
||
| 1333 | |||
| 1334 | C2 = XMVectorSplatZ(A); |
||
| 1335 | C1 = XMVectorSplatY(A); |
||
| 1336 | C0 = XMVectorSplatX(A); |
||
| 1337 | |||
| 1338 | N0 = XMVectorPermute(NormalAxis, NormalAxis, SwizzleYZXW.v); |
||
| 1339 | N1 = XMVectorPermute(NormalAxis, NormalAxis, SwizzleZXYW.v); |
||
| 1340 | |||
| 1341 | V0 = XMVectorMultiply(C2, N0); |
||
| 1342 | V0 = XMVectorMultiply(V0, N1); |
||
| 1343 | |||
| 1344 | R0 = XMVectorMultiply(C2, NormalAxis); |
||
| 1345 | R0 = XMVectorMultiplyAdd(R0, NormalAxis, C1); |
||
| 1346 | |||
| 1347 | R1 = XMVectorMultiplyAdd(C0, NormalAxis, V0); |
||
| 1348 | R2 = XMVectorNegativeMultiplySubtract(C0, NormalAxis, V0); |
||
| 1349 | |||
| 1350 | V0 = XMVectorSelect(A, R0, g_XMSelect1110.v); |
||
| 1351 | V1 = XMVectorPermute(R1, R2, Permute0Z1Y1Z0X.v); |
||
| 1352 | V2 = XMVectorPermute(R1, R2, Permute0Y1X0Y1X.v); |
||
| 1353 | |||
| 1354 | M.r[0] = XMVectorPermute(V0, V1, Permute0X1X1Y0W.v); |
||
| 1355 | M.r[1] = XMVectorPermute(V0, V1, Permute1Z0Y1W0W.v); |
||
| 1356 | M.r[2] = XMVectorPermute(V0, V2, Permute1X1Y0Z0W.v); |
||
| 1357 | M.r[3] = g_XMIdentityR3.v; |
||
| 1358 | |||
| 1359 | return M; |
||
| 1360 | |||
| 1361 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1362 | XMVECTOR N0, N1; |
||
| 1363 | XMVECTOR V0, V1, V2; |
||
| 1364 | XMVECTOR R0, R1, R2; |
||
| 1365 | XMVECTOR C0, C1, C2; |
||
| 1366 | XMMATRIX M; |
||
| 1367 | |||
| 1368 | FLOAT fSinAngle = sinf(Angle); |
||
| 1369 | FLOAT fCosAngle = cosf(Angle); |
||
| 1370 | |||
| 1371 | C2 = _mm_set_ps1(1.0f - fCosAngle); |
||
| 1372 | C1 = _mm_set_ps1(fCosAngle); |
||
| 1373 | C0 = _mm_set_ps1(fSinAngle); |
||
| 1374 | |||
| 1375 | N0 = _mm_shuffle_ps(NormalAxis,NormalAxis,_MM_SHUFFLE(3,0,2,1)); |
||
| 1376 | // N0 = XMVectorPermute(NormalAxis, NormalAxis, SwizzleYZXW); |
||
| 1377 | N1 = _mm_shuffle_ps(NormalAxis,NormalAxis,_MM_SHUFFLE(3,1,0,2)); |
||
| 1378 | // N1 = XMVectorPermute(NormalAxis, NormalAxis, SwizzleZXYW); |
||
| 1379 | |||
| 1380 | V0 = _mm_mul_ps(C2, N0); |
||
| 1381 | V0 = _mm_mul_ps(V0, N1); |
||
| 1382 | |||
| 1383 | R0 = _mm_mul_ps(C2, NormalAxis); |
||
| 1384 | R0 = _mm_mul_ps(R0, NormalAxis); |
||
| 1385 | R0 = _mm_add_ps(R0, C1); |
||
| 1386 | |||
| 1387 | R1 = _mm_mul_ps(C0, NormalAxis); |
||
| 1388 | R1 = _mm_add_ps(R1, V0); |
||
| 1389 | R2 = _mm_mul_ps(C0, NormalAxis); |
||
| 1390 | R2 = _mm_sub_ps(V0,R2); |
||
| 1391 | |||
| 1392 | V0 = _mm_and_ps(R0,g_XMMask3); |
||
| 1393 | // V0 = XMVectorSelect(A, R0, g_XMSelect1110); |
||
| 1394 | V1 = _mm_shuffle_ps(R1,R2,_MM_SHUFFLE(2,1,2,0)); |
||
| 1395 | V1 = _mm_shuffle_ps(V1,V1,_MM_SHUFFLE(0,3,2,1)); |
||
| 1396 | // V1 = XMVectorPermute(R1, R2, Permute0Z1Y1Z0X); |
||
| 1397 | V2 = _mm_shuffle_ps(R1,R2,_MM_SHUFFLE(0,0,1,1)); |
||
| 1398 | V2 = _mm_shuffle_ps(V2,V2,_MM_SHUFFLE(2,0,2,0)); |
||
| 1399 | // V2 = XMVectorPermute(R1, R2, Permute0Y1X0Y1X); |
||
| 1400 | |||
| 1401 | R2 = _mm_shuffle_ps(V0,V1,_MM_SHUFFLE(1,0,3,0)); |
||
| 1402 | R2 = _mm_shuffle_ps(R2,R2,_MM_SHUFFLE(1,3,2,0)); |
||
| 1403 | M.r[0] = R2; |
||
| 1404 | // M.r[0] = XMVectorPermute(V0, V1, Permute0X1X1Y0W); |
||
| 1405 | R2 = _mm_shuffle_ps(V0,V1,_MM_SHUFFLE(3,2,3,1)); |
||
| 1406 | R2 = _mm_shuffle_ps(R2,R2,_MM_SHUFFLE(1,3,0,2)); |
||
| 1407 | M.r[1] = R2; |
||
| 1408 | // M.r[1] = XMVectorPermute(V0, V1, Permute1Z0Y1W0W); |
||
| 1409 | V2 = _mm_shuffle_ps(V2,V0,_MM_SHUFFLE(3,2,1,0)); |
||
| 1410 | // R2 = _mm_shuffle_ps(R2,R2,_MM_SHUFFLE(3,2,1,0)); |
||
| 1411 | M.r[2] = V2; |
||
| 1412 | // M.r[2] = XMVectorPermute(V0, V2, Permute1X1Y0Z0W); |
||
| 1413 | M.r[3] = g_XMIdentityR3; |
||
| 1414 | return M; |
||
| 1415 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1416 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1417 | } |
||
| 1418 | |||
| 1419 | //------------------------------------------------------------------------------ |
||
| 1420 | |||
| 1421 | XMINLINE XMMATRIX XMMatrixRotationAxis |
||
| 1422 | ( |
||
| 1423 | FXMVECTOR Axis, |
||
| 1424 | FLOAT Angle |
||
| 1425 | ) |
||
| 1426 | { |
||
| 1427 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1428 | |||
| 1429 | XMVECTOR Normal; |
||
| 1430 | XMMATRIX M; |
||
| 1431 | |||
| 1432 | XMASSERT(!XMVector3Equal(Axis, XMVectorZero())); |
||
| 1433 | XMASSERT(!XMVector3IsInfinite(Axis)); |
||
| 1434 | |||
| 1435 | Normal = XMVector3Normalize(Axis); |
||
| 1436 | M = XMMatrixRotationNormal(Normal, Angle); |
||
| 1437 | |||
| 1438 | return M; |
||
| 1439 | |||
| 1440 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1441 | XMASSERT(!XMVector3Equal(Axis, XMVectorZero())); |
||
| 1442 | XMASSERT(!XMVector3IsInfinite(Axis)); |
||
| 1443 | XMVECTOR Normal = XMVector3Normalize(Axis); |
||
| 1444 | XMMATRIX M = XMMatrixRotationNormal(Normal, Angle); |
||
| 1445 | return M; |
||
| 1446 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1447 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1448 | } |
||
| 1449 | |||
| 1450 | //------------------------------------------------------------------------------ |
||
| 1451 | |||
| 1452 | XMFINLINE XMMATRIX XMMatrixRotationQuaternion |
||
| 1453 | ( |
||
| 1454 | FXMVECTOR Quaternion |
||
| 1455 | ) |
||
| 1456 | { |
||
| 1457 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1458 | |||
| 1459 | XMMATRIX M; |
||
| 1460 | XMVECTOR Q0, Q1; |
||
| 1461 | XMVECTOR V0, V1, V2; |
||
| 1462 | XMVECTOR R0, R1, R2; |
||
| 1463 | static CONST XMVECTOR Constant1110 = {1.0f, 1.0f, 1.0f, 0.0f}; |
||
| 1464 | static CONST XMVECTORU32 SwizzleXXYW = {XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_0Y, XM_PERMUTE_0W}; |
||
| 1465 | static CONST XMVECTORU32 SwizzleZYZW = {XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_0Z, XM_PERMUTE_0W}; |
||
| 1466 | static CONST XMVECTORU32 SwizzleYZXW = {XM_PERMUTE_0Y, XM_PERMUTE_0Z, XM_PERMUTE_0X, XM_PERMUTE_0W}; |
||
| 1467 | static CONST XMVECTORU32 Permute0Y0X0X1W = {XM_PERMUTE_0Y, XM_PERMUTE_0X, XM_PERMUTE_0X, XM_PERMUTE_1W}; |
||
| 1468 | static CONST XMVECTORU32 Permute0Z0Z0Y1W = {XM_PERMUTE_0Z, XM_PERMUTE_0Z, XM_PERMUTE_0Y, XM_PERMUTE_1W}; |
||
| 1469 | static CONST XMVECTORU32 Permute0Y1X1Y0Z = {XM_PERMUTE_0Y, XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0Z}; |
||
| 1470 | static CONST XMVECTORU32 Permute0X1Z0X1Z = {XM_PERMUTE_0X, XM_PERMUTE_1Z, XM_PERMUTE_0X, XM_PERMUTE_1Z}; |
||
| 1471 | static CONST XMVECTORU32 Permute0X1X1Y0W = {XM_PERMUTE_0X, XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0W}; |
||
| 1472 | static CONST XMVECTORU32 Permute1Z0Y1W0W = {XM_PERMUTE_1Z, XM_PERMUTE_0Y, XM_PERMUTE_1W, XM_PERMUTE_0W}; |
||
| 1473 | static CONST XMVECTORU32 Permute1X1Y0Z0W = {XM_PERMUTE_1X, XM_PERMUTE_1Y, XM_PERMUTE_0Z, XM_PERMUTE_0W}; |
||
| 1474 | |||
| 1475 | Q0 = XMVectorAdd(Quaternion, Quaternion); |
||
| 1476 | Q1 = XMVectorMultiply(Quaternion, Q0); |
||
| 1477 | |||
| 1478 | V0 = XMVectorPermute(Q1, Constant1110, Permute0Y0X0X1W.v); |
||
| 1479 | V1 = XMVectorPermute(Q1, Constant1110, Permute0Z0Z0Y1W.v); |
||
| 1480 | R0 = XMVectorSubtract(Constant1110, V0); |
||
| 1481 | R0 = XMVectorSubtract(R0, V1); |
||
| 1482 | |||
| 1483 | V0 = XMVectorPermute(Quaternion, Quaternion, SwizzleXXYW.v); |
||
| 1484 | V1 = XMVectorPermute(Q0, Q0, SwizzleZYZW.v); |
||
| 1485 | V0 = XMVectorMultiply(V0, V1); |
||
| 1486 | |||
| 1487 | V1 = XMVectorSplatW(Quaternion); |
||
| 1488 | V2 = XMVectorPermute(Q0, Q0, SwizzleYZXW.v); |
||
| 1489 | V1 = XMVectorMultiply(V1, V2); |
||
| 1490 | |||
| 1491 | R1 = XMVectorAdd(V0, V1); |
||
| 1492 | R2 = XMVectorSubtract(V0, V1); |
||
| 1493 | |||
| 1494 | V0 = XMVectorPermute(R1, R2, Permute0Y1X1Y0Z.v); |
||
| 1495 | V1 = XMVectorPermute(R1, R2, Permute0X1Z0X1Z.v); |
||
| 1496 | |||
| 1497 | M.r[0] = XMVectorPermute(R0, V0, Permute0X1X1Y0W.v); |
||
| 1498 | M.r[1] = XMVectorPermute(R0, V0, Permute1Z0Y1W0W.v); |
||
| 1499 | M.r[2] = XMVectorPermute(R0, V1, Permute1X1Y0Z0W.v); |
||
| 1500 | M.r[3] = g_XMIdentityR3.v; |
||
| 1501 | |||
| 1502 | return M; |
||
| 1503 | |||
| 1504 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1505 | XMMATRIX M; |
||
| 1506 | XMVECTOR Q0, Q1; |
||
| 1507 | XMVECTOR V0, V1, V2; |
||
| 1508 | XMVECTOR R0, R1, R2; |
||
| 1509 | static CONST XMVECTORF32 Constant1110 = {1.0f, 1.0f, 1.0f, 0.0f}; |
||
| 1510 | |||
| 1511 | Q0 = _mm_add_ps(Quaternion,Quaternion); |
||
| 1512 | Q1 = _mm_mul_ps(Quaternion,Q0); |
||
| 1513 | |||
| 1514 | V0 = _mm_shuffle_ps(Q1,Q1,_MM_SHUFFLE(3,0,0,1)); |
||
| 1515 | V0 = _mm_and_ps(V0,g_XMMask3); |
||
| 1516 | // V0 = XMVectorPermute(Q1, Constant1110,Permute0Y0X0X1W); |
||
| 1517 | V1 = _mm_shuffle_ps(Q1,Q1,_MM_SHUFFLE(3,1,2,2)); |
||
| 1518 | V1 = _mm_and_ps(V1,g_XMMask3); |
||
| 1519 | // V1 = XMVectorPermute(Q1, Constant1110,Permute0Z0Z0Y1W); |
||
| 1520 | R0 = _mm_sub_ps(Constant1110,V0); |
||
| 1521 | R0 = _mm_sub_ps(R0, V1); |
||
| 1522 | |||
| 1523 | V0 = _mm_shuffle_ps(Quaternion,Quaternion,_MM_SHUFFLE(3,1,0,0)); |
||
| 1524 | // V0 = XMVectorPermute(Quaternion, Quaternion,SwizzleXXYW); |
||
| 1525 | V1 = _mm_shuffle_ps(Q0,Q0,_MM_SHUFFLE(3,2,1,2)); |
||
| 1526 | // V1 = XMVectorPermute(Q0, Q0,SwizzleZYZW); |
||
| 1527 | V0 = _mm_mul_ps(V0, V1); |
||
| 1528 | |||
| 1529 | V1 = _mm_shuffle_ps(Quaternion,Quaternion,_MM_SHUFFLE(3,3,3,3)); |
||
| 1530 | // V1 = XMVectorSplatW(Quaternion); |
||
| 1531 | V2 = _mm_shuffle_ps(Q0,Q0,_MM_SHUFFLE(3,0,2,1)); |
||
| 1532 | // V2 = XMVectorPermute(Q0, Q0,SwizzleYZXW); |
||
| 1533 | V1 = _mm_mul_ps(V1, V2); |
||
| 1534 | |||
| 1535 | R1 = _mm_add_ps(V0, V1); |
||
| 1536 | R2 = _mm_sub_ps(V0, V1); |
||
| 1537 | |||
| 1538 | V0 = _mm_shuffle_ps(R1,R2,_MM_SHUFFLE(1,0,2,1)); |
||
| 1539 | V0 = _mm_shuffle_ps(V0,V0,_MM_SHUFFLE(1,3,2,0)); |
||
| 1540 | // V0 = XMVectorPermute(R1, R2,Permute0Y1X1Y0Z); |
||
| 1541 | V1 = _mm_shuffle_ps(R1,R2,_MM_SHUFFLE(2,2,0,0)); |
||
| 1542 | V1 = _mm_shuffle_ps(V1,V1,_MM_SHUFFLE(2,0,2,0)); |
||
| 1543 | // V1 = XMVectorPermute(R1, R2,Permute0X1Z0X1Z); |
||
| 1544 | |||
| 1545 | Q1 = _mm_shuffle_ps(R0,V0,_MM_SHUFFLE(1,0,3,0)); |
||
| 1546 | Q1 = _mm_shuffle_ps(Q1,Q1,_MM_SHUFFLE(1,3,2,0)); |
||
| 1547 | M.r[0] = Q1; |
||
| 1548 | // M.r[0] = XMVectorPermute(R0, V0,Permute0X1X1Y0W); |
||
| 1549 | Q1 = _mm_shuffle_ps(R0,V0,_MM_SHUFFLE(3,2,3,1)); |
||
| 1550 | Q1 = _mm_shuffle_ps(Q1,Q1,_MM_SHUFFLE(1,3,0,2)); |
||
| 1551 | M.r[1] = Q1; |
||
| 1552 | // M.r[1] = XMVectorPermute(R0, V0,Permute1Z0Y1W0W); |
||
| 1553 | Q1 = _mm_shuffle_ps(V1,R0,_MM_SHUFFLE(3,2,1,0)); |
||
| 1554 | M.r[2] = Q1; |
||
| 1555 | // M.r[2] = XMVectorPermute(R0, V1,Permute1X1Y0Z0W); |
||
| 1556 | M.r[3] = g_XMIdentityR3; |
||
| 1557 | return M; |
||
| 1558 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1559 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1560 | } |
||
| 1561 | |||
| 1562 | //------------------------------------------------------------------------------ |
||
| 1563 | |||
| 1564 | XMINLINE XMMATRIX XMMatrixTransformation2D |
||
| 1565 | ( |
||
| 1566 | FXMVECTOR ScalingOrigin, |
||
| 1567 | FLOAT ScalingOrientation, |
||
| 1568 | FXMVECTOR Scaling, |
||
| 1569 | FXMVECTOR RotationOrigin, |
||
| 1570 | FLOAT Rotation, |
||
| 1571 | CXMVECTOR Translation |
||
| 1572 | ) |
||
| 1573 | { |
||
| 1574 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1575 | |||
| 1576 | XMMATRIX M; |
||
| 1577 | XMVECTOR VScaling; |
||
| 1578 | XMVECTOR NegScalingOrigin; |
||
| 1579 | XMVECTOR VScalingOrigin; |
||
| 1580 | XMMATRIX MScalingOriginI; |
||
| 1581 | XMMATRIX MScalingOrientation; |
||
| 1582 | XMMATRIX MScalingOrientationT; |
||
| 1583 | XMMATRIX MScaling; |
||
| 1584 | XMVECTOR VRotationOrigin; |
||
| 1585 | XMMATRIX MRotation; |
||
| 1586 | XMVECTOR VTranslation; |
||
| 1587 | |||
| 1588 | // M = Inverse(MScalingOrigin) * Transpose(MScalingOrientation) * MScaling * MScalingOrientation * |
||
| 1589 | // MScalingOrigin * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation; |
||
| 1590 | |||
| 1591 | VScalingOrigin = XMVectorSelect(g_XMSelect1100.v, ScalingOrigin, g_XMSelect1100.v); |
||
| 1592 | NegScalingOrigin = XMVectorNegate(VScalingOrigin); |
||
| 1593 | |||
| 1594 | MScalingOriginI = XMMatrixTranslationFromVector(NegScalingOrigin); |
||
| 1595 | MScalingOrientation = XMMatrixRotationZ(ScalingOrientation); |
||
| 1596 | MScalingOrientationT = XMMatrixTranspose(MScalingOrientation); |
||
| 1597 | VScaling = XMVectorSelect(g_XMOne.v, Scaling, g_XMSelect1100.v); |
||
| 1598 | MScaling = XMMatrixScalingFromVector(VScaling); |
||
| 1599 | VRotationOrigin = XMVectorSelect(g_XMSelect1100.v, RotationOrigin, g_XMSelect1100.v); |
||
| 1600 | MRotation = XMMatrixRotationZ(Rotation); |
||
| 1601 | VTranslation = XMVectorSelect(g_XMSelect1100.v, Translation,g_XMSelect1100.v); |
||
| 1602 | |||
| 1603 | M = XMMatrixMultiply(MScalingOriginI, MScalingOrientationT); |
||
| 1604 | M = XMMatrixMultiply(M, MScaling); |
||
| 1605 | M = XMMatrixMultiply(M, MScalingOrientation); |
||
| 1606 | M.r[3] = XMVectorAdd(M.r[3], VScalingOrigin); |
||
| 1607 | M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin); |
||
| 1608 | M = XMMatrixMultiply(M, MRotation); |
||
| 1609 | M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin); |
||
| 1610 | M.r[3] = XMVectorAdd(M.r[3], VTranslation); |
||
| 1611 | |||
| 1612 | return M; |
||
| 1613 | |||
| 1614 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1615 | XMMATRIX M; |
||
| 1616 | XMVECTOR VScaling; |
||
| 1617 | XMVECTOR NegScalingOrigin; |
||
| 1618 | XMVECTOR VScalingOrigin; |
||
| 1619 | XMMATRIX MScalingOriginI; |
||
| 1620 | XMMATRIX MScalingOrientation; |
||
| 1621 | XMMATRIX MScalingOrientationT; |
||
| 1622 | XMMATRIX MScaling; |
||
| 1623 | XMVECTOR VRotationOrigin; |
||
| 1624 | XMMATRIX MRotation; |
||
| 1625 | XMVECTOR VTranslation; |
||
| 1626 | |||
| 1627 | // M = Inverse(MScalingOrigin) * Transpose(MScalingOrientation) * MScaling * MScalingOrientation * |
||
| 1628 | // MScalingOrigin * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation; |
||
| 1629 | static const XMVECTORU32 Mask2 = {0xFFFFFFFF,0xFFFFFFFF,0,0}; |
||
| 1630 | static const XMVECTORF32 ZWOne = {0,0,1.0f,1.0f}; |
||
| 1631 | |||
| 1632 | VScalingOrigin = _mm_and_ps(ScalingOrigin, Mask2); |
||
| 1633 | NegScalingOrigin = XMVectorNegate(VScalingOrigin); |
||
| 1634 | |||
| 1635 | MScalingOriginI = XMMatrixTranslationFromVector(NegScalingOrigin); |
||
| 1636 | MScalingOrientation = XMMatrixRotationZ(ScalingOrientation); |
||
| 1637 | MScalingOrientationT = XMMatrixTranspose(MScalingOrientation); |
||
| 1638 | VScaling = _mm_and_ps(Scaling, Mask2); |
||
| 1639 | VScaling = _mm_or_ps(VScaling,ZWOne); |
||
| 1640 | MScaling = XMMatrixScalingFromVector(VScaling); |
||
| 1641 | VRotationOrigin = _mm_and_ps(RotationOrigin, Mask2); |
||
| 1642 | MRotation = XMMatrixRotationZ(Rotation); |
||
| 1643 | VTranslation = _mm_and_ps(Translation, Mask2); |
||
| 1644 | |||
| 1645 | M = XMMatrixMultiply(MScalingOriginI, MScalingOrientationT); |
||
| 1646 | M = XMMatrixMultiply(M, MScaling); |
||
| 1647 | M = XMMatrixMultiply(M, MScalingOrientation); |
||
| 1648 | M.r[3] = XMVectorAdd(M.r[3], VScalingOrigin); |
||
| 1649 | M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin); |
||
| 1650 | M = XMMatrixMultiply(M, MRotation); |
||
| 1651 | M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin); |
||
| 1652 | M.r[3] = XMVectorAdd(M.r[3], VTranslation); |
||
| 1653 | |||
| 1654 | return M; |
||
| 1655 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1656 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1657 | } |
||
| 1658 | |||
| 1659 | //------------------------------------------------------------------------------ |
||
| 1660 | |||
| 1661 | XMINLINE XMMATRIX XMMatrixTransformation |
||
| 1662 | ( |
||
| 1663 | FXMVECTOR ScalingOrigin, |
||
| 1664 | FXMVECTOR ScalingOrientationQuaternion, |
||
| 1665 | FXMVECTOR Scaling, |
||
| 1666 | CXMVECTOR RotationOrigin, |
||
| 1667 | CXMVECTOR RotationQuaternion, |
||
| 1668 | CXMVECTOR Translation |
||
| 1669 | ) |
||
| 1670 | { |
||
| 1671 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1672 | |||
| 1673 | XMMATRIX M; |
||
| 1674 | XMVECTOR NegScalingOrigin; |
||
| 1675 | XMVECTOR VScalingOrigin; |
||
| 1676 | XMMATRIX MScalingOriginI; |
||
| 1677 | XMMATRIX MScalingOrientation; |
||
| 1678 | XMMATRIX MScalingOrientationT; |
||
| 1679 | XMMATRIX MScaling; |
||
| 1680 | XMVECTOR VRotationOrigin; |
||
| 1681 | XMMATRIX MRotation; |
||
| 1682 | XMVECTOR VTranslation; |
||
| 1683 | |||
| 1684 | // M = Inverse(MScalingOrigin) * Transpose(MScalingOrientation) * MScaling * MScalingOrientation * |
||
| 1685 | // MScalingOrigin * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation; |
||
| 1686 | |||
| 1687 | VScalingOrigin = XMVectorSelect(g_XMSelect1110.v, ScalingOrigin, g_XMSelect1110.v); |
||
| 1688 | NegScalingOrigin = XMVectorNegate(ScalingOrigin); |
||
| 1689 | |||
| 1690 | MScalingOriginI = XMMatrixTranslationFromVector(NegScalingOrigin); |
||
| 1691 | MScalingOrientation = XMMatrixRotationQuaternion(ScalingOrientationQuaternion); |
||
| 1692 | MScalingOrientationT = XMMatrixTranspose(MScalingOrientation); |
||
| 1693 | MScaling = XMMatrixScalingFromVector(Scaling); |
||
| 1694 | VRotationOrigin = XMVectorSelect(g_XMSelect1110.v, RotationOrigin, g_XMSelect1110.v); |
||
| 1695 | MRotation = XMMatrixRotationQuaternion(RotationQuaternion); |
||
| 1696 | VTranslation = XMVectorSelect(g_XMSelect1110.v, Translation, g_XMSelect1110.v); |
||
| 1697 | |||
| 1698 | M = XMMatrixMultiply(MScalingOriginI, MScalingOrientationT); |
||
| 1699 | M = XMMatrixMultiply(M, MScaling); |
||
| 1700 | M = XMMatrixMultiply(M, MScalingOrientation); |
||
| 1701 | M.r[3] = XMVectorAdd(M.r[3], VScalingOrigin); |
||
| 1702 | M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin); |
||
| 1703 | M = XMMatrixMultiply(M, MRotation); |
||
| 1704 | M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin); |
||
| 1705 | M.r[3] = XMVectorAdd(M.r[3], VTranslation); |
||
| 1706 | |||
| 1707 | return M; |
||
| 1708 | |||
| 1709 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1710 | XMMATRIX M; |
||
| 1711 | XMVECTOR NegScalingOrigin; |
||
| 1712 | XMVECTOR VScalingOrigin; |
||
| 1713 | XMMATRIX MScalingOriginI; |
||
| 1714 | XMMATRIX MScalingOrientation; |
||
| 1715 | XMMATRIX MScalingOrientationT; |
||
| 1716 | XMMATRIX MScaling; |
||
| 1717 | XMVECTOR VRotationOrigin; |
||
| 1718 | XMMATRIX MRotation; |
||
| 1719 | XMVECTOR VTranslation; |
||
| 1720 | |||
| 1721 | // M = Inverse(MScalingOrigin) * Transpose(MScalingOrientation) * MScaling * MScalingOrientation * |
||
| 1722 | // MScalingOrigin * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation; |
||
| 1723 | |||
| 1724 | VScalingOrigin = _mm_and_ps(ScalingOrigin,g_XMMask3); |
||
| 1725 | NegScalingOrigin = XMVectorNegate(ScalingOrigin); |
||
| 1726 | |||
| 1727 | MScalingOriginI = XMMatrixTranslationFromVector(NegScalingOrigin); |
||
| 1728 | MScalingOrientation = XMMatrixRotationQuaternion(ScalingOrientationQuaternion); |
||
| 1729 | MScalingOrientationT = XMMatrixTranspose(MScalingOrientation); |
||
| 1730 | MScaling = XMMatrixScalingFromVector(Scaling); |
||
| 1731 | VRotationOrigin = _mm_and_ps(RotationOrigin,g_XMMask3); |
||
| 1732 | MRotation = XMMatrixRotationQuaternion(RotationQuaternion); |
||
| 1733 | VTranslation = _mm_and_ps(Translation,g_XMMask3); |
||
| 1734 | |||
| 1735 | M = XMMatrixMultiply(MScalingOriginI, MScalingOrientationT); |
||
| 1736 | M = XMMatrixMultiply(M, MScaling); |
||
| 1737 | M = XMMatrixMultiply(M, MScalingOrientation); |
||
| 1738 | M.r[3] = XMVectorAdd(M.r[3], VScalingOrigin); |
||
| 1739 | M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin); |
||
| 1740 | M = XMMatrixMultiply(M, MRotation); |
||
| 1741 | M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin); |
||
| 1742 | M.r[3] = XMVectorAdd(M.r[3], VTranslation); |
||
| 1743 | |||
| 1744 | return M; |
||
| 1745 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1746 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1747 | } |
||
| 1748 | |||
| 1749 | //------------------------------------------------------------------------------ |
||
| 1750 | |||
| 1751 | XMINLINE XMMATRIX XMMatrixAffineTransformation2D |
||
| 1752 | ( |
||
| 1753 | FXMVECTOR Scaling, |
||
| 1754 | FXMVECTOR RotationOrigin, |
||
| 1755 | FLOAT Rotation, |
||
| 1756 | FXMVECTOR Translation |
||
| 1757 | ) |
||
| 1758 | { |
||
| 1759 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1760 | |||
| 1761 | XMMATRIX M; |
||
| 1762 | XMVECTOR VScaling; |
||
| 1763 | XMMATRIX MScaling; |
||
| 1764 | XMVECTOR VRotationOrigin; |
||
| 1765 | XMMATRIX MRotation; |
||
| 1766 | XMVECTOR VTranslation; |
||
| 1767 | |||
| 1768 | // M = MScaling * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation; |
||
| 1769 | |||
| 1770 | VScaling = XMVectorSelect(g_XMOne.v, Scaling, g_XMSelect1100.v); |
||
| 1771 | MScaling = XMMatrixScalingFromVector(VScaling); |
||
| 1772 | VRotationOrigin = XMVectorSelect(g_XMSelect1100.v, RotationOrigin, g_XMSelect1100.v); |
||
| 1773 | MRotation = XMMatrixRotationZ(Rotation); |
||
| 1774 | VTranslation = XMVectorSelect(g_XMSelect1100.v, Translation,g_XMSelect1100.v); |
||
| 1775 | |||
| 1776 | M = MScaling; |
||
| 1777 | M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin); |
||
| 1778 | M = XMMatrixMultiply(M, MRotation); |
||
| 1779 | M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin); |
||
| 1780 | M.r[3] = XMVectorAdd(M.r[3], VTranslation); |
||
| 1781 | |||
| 1782 | return M; |
||
| 1783 | |||
| 1784 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1785 | XMMATRIX M; |
||
| 1786 | XMVECTOR VScaling; |
||
| 1787 | XMMATRIX MScaling; |
||
| 1788 | XMVECTOR VRotationOrigin; |
||
| 1789 | XMMATRIX MRotation; |
||
| 1790 | XMVECTOR VTranslation; |
||
| 1791 | static const XMVECTORU32 Mask2 = {0xFFFFFFFFU,0xFFFFFFFFU,0,0}; |
||
| 1792 | static const XMVECTORF32 ZW1 = {0,0,1.0f,1.0f}; |
||
| 1793 | |||
| 1794 | // M = MScaling * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation; |
||
| 1795 | |||
| 1796 | VScaling = _mm_and_ps(Scaling, Mask2); |
||
| 1797 | VScaling = _mm_or_ps(VScaling, ZW1); |
||
| 1798 | MScaling = XMMatrixScalingFromVector(VScaling); |
||
| 1799 | VRotationOrigin = _mm_and_ps(RotationOrigin, Mask2); |
||
| 1800 | MRotation = XMMatrixRotationZ(Rotation); |
||
| 1801 | VTranslation = _mm_and_ps(Translation, Mask2); |
||
| 1802 | |||
| 1803 | M = MScaling; |
||
| 1804 | M.r[3] = _mm_sub_ps(M.r[3], VRotationOrigin); |
||
| 1805 | M = XMMatrixMultiply(M, MRotation); |
||
| 1806 | M.r[3] = _mm_add_ps(M.r[3], VRotationOrigin); |
||
| 1807 | M.r[3] = _mm_add_ps(M.r[3], VTranslation); |
||
| 1808 | return M; |
||
| 1809 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1810 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1811 | } |
||
| 1812 | |||
| 1813 | //------------------------------------------------------------------------------ |
||
| 1814 | |||
| 1815 | XMINLINE XMMATRIX XMMatrixAffineTransformation |
||
| 1816 | ( |
||
| 1817 | FXMVECTOR Scaling, |
||
| 1818 | FXMVECTOR RotationOrigin, |
||
| 1819 | FXMVECTOR RotationQuaternion, |
||
| 1820 | CXMVECTOR Translation |
||
| 1821 | ) |
||
| 1822 | { |
||
| 1823 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1824 | |||
| 1825 | XMMATRIX M; |
||
| 1826 | XMMATRIX MScaling; |
||
| 1827 | XMVECTOR VRotationOrigin; |
||
| 1828 | XMMATRIX MRotation; |
||
| 1829 | XMVECTOR VTranslation; |
||
| 1830 | |||
| 1831 | // M = MScaling * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation; |
||
| 1832 | |||
| 1833 | MScaling = XMMatrixScalingFromVector(Scaling); |
||
| 1834 | VRotationOrigin = XMVectorSelect(g_XMSelect1110.v, RotationOrigin,g_XMSelect1110.v); |
||
| 1835 | MRotation = XMMatrixRotationQuaternion(RotationQuaternion); |
||
| 1836 | VTranslation = XMVectorSelect(g_XMSelect1110.v, Translation,g_XMSelect1110.v); |
||
| 1837 | |||
| 1838 | M = MScaling; |
||
| 1839 | M.r[3] = XMVectorSubtract(M.r[3], VRotationOrigin); |
||
| 1840 | M = XMMatrixMultiply(M, MRotation); |
||
| 1841 | M.r[3] = XMVectorAdd(M.r[3], VRotationOrigin); |
||
| 1842 | M.r[3] = XMVectorAdd(M.r[3], VTranslation); |
||
| 1843 | |||
| 1844 | return M; |
||
| 1845 | |||
| 1846 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1847 | XMMATRIX M; |
||
| 1848 | XMMATRIX MScaling; |
||
| 1849 | XMVECTOR VRotationOrigin; |
||
| 1850 | XMMATRIX MRotation; |
||
| 1851 | XMVECTOR VTranslation; |
||
| 1852 | |||
| 1853 | // M = MScaling * Inverse(MRotationOrigin) * MRotation * MRotationOrigin * MTranslation; |
||
| 1854 | |||
| 1855 | MScaling = XMMatrixScalingFromVector(Scaling); |
||
| 1856 | VRotationOrigin = _mm_and_ps(RotationOrigin,g_XMMask3); |
||
| 1857 | MRotation = XMMatrixRotationQuaternion(RotationQuaternion); |
||
| 1858 | VTranslation = _mm_and_ps(Translation,g_XMMask3); |
||
| 1859 | |||
| 1860 | M = MScaling; |
||
| 1861 | M.r[3] = _mm_sub_ps(M.r[3], VRotationOrigin); |
||
| 1862 | M = XMMatrixMultiply(M, MRotation); |
||
| 1863 | M.r[3] = _mm_add_ps(M.r[3], VRotationOrigin); |
||
| 1864 | M.r[3] = _mm_add_ps(M.r[3], VTranslation); |
||
| 1865 | |||
| 1866 | return M; |
||
| 1867 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1868 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1869 | } |
||
| 1870 | |||
| 1871 | //------------------------------------------------------------------------------ |
||
| 1872 | |||
| 1873 | XMFINLINE XMMATRIX XMMatrixReflect |
||
| 1874 | ( |
||
| 1875 | FXMVECTOR ReflectionPlane |
||
| 1876 | ) |
||
| 1877 | { |
||
| 1878 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1879 | |||
| 1880 | XMVECTOR P; |
||
| 1881 | XMVECTOR S; |
||
| 1882 | XMVECTOR A, B, C, D; |
||
| 1883 | XMMATRIX M; |
||
| 1884 | static CONST XMVECTOR NegativeTwo = {-2.0f, -2.0f, -2.0f, 0.0f}; |
||
| 1885 | |||
| 1886 | XMASSERT(!XMVector3Equal(ReflectionPlane, XMVectorZero())); |
||
| 1887 | XMASSERT(!XMPlaneIsInfinite(ReflectionPlane)); |
||
| 1888 | |||
| 1889 | P = XMPlaneNormalize(ReflectionPlane); |
||
| 1890 | S = XMVectorMultiply(P, NegativeTwo); |
||
| 1891 | |||
| 1892 | A = XMVectorSplatX(P); |
||
| 1893 | B = XMVectorSplatY(P); |
||
| 1894 | C = XMVectorSplatZ(P); |
||
| 1895 | D = XMVectorSplatW(P); |
||
| 1896 | |||
| 1897 | M.r[0] = XMVectorMultiplyAdd(A, S, g_XMIdentityR0.v); |
||
| 1898 | M.r[1] = XMVectorMultiplyAdd(B, S, g_XMIdentityR1.v); |
||
| 1899 | M.r[2] = XMVectorMultiplyAdd(C, S, g_XMIdentityR2.v); |
||
| 1900 | M.r[3] = XMVectorMultiplyAdd(D, S, g_XMIdentityR3.v); |
||
| 1901 | |||
| 1902 | return M; |
||
| 1903 | |||
| 1904 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1905 | XMMATRIX M; |
||
| 1906 | static CONST XMVECTORF32 NegativeTwo = {-2.0f, -2.0f, -2.0f, 0.0f}; |
||
| 1907 | |||
| 1908 | XMASSERT(!XMVector3Equal(ReflectionPlane, XMVectorZero())); |
||
| 1909 | XMASSERT(!XMPlaneIsInfinite(ReflectionPlane)); |
||
| 1910 | |||
| 1911 | XMVECTOR P = XMPlaneNormalize(ReflectionPlane); |
||
| 1912 | XMVECTOR S = _mm_mul_ps(P,NegativeTwo); |
||
| 1913 | XMVECTOR X = _mm_shuffle_ps(P,P,_MM_SHUFFLE(0,0,0,0)); |
||
| 1914 | XMVECTOR Y = _mm_shuffle_ps(P,P,_MM_SHUFFLE(1,1,1,1)); |
||
| 1915 | XMVECTOR Z = _mm_shuffle_ps(P,P,_MM_SHUFFLE(2,2,2,2)); |
||
| 1916 | P = _mm_shuffle_ps(P,P,_MM_SHUFFLE(3,3,3,3)); |
||
| 1917 | X = _mm_mul_ps(X,S); |
||
| 1918 | Y = _mm_mul_ps(Y,S); |
||
| 1919 | Z = _mm_mul_ps(Z,S); |
||
| 1920 | P = _mm_mul_ps(P,S); |
||
| 1921 | X = _mm_add_ps(X,g_XMIdentityR0); |
||
| 1922 | Y = _mm_add_ps(Y,g_XMIdentityR1); |
||
| 1923 | Z = _mm_add_ps(Z,g_XMIdentityR2); |
||
| 1924 | P = _mm_add_ps(P,g_XMIdentityR3); |
||
| 1925 | M.r[0] = X; |
||
| 1926 | M.r[1] = Y; |
||
| 1927 | M.r[2] = Z; |
||
| 1928 | M.r[3] = P; |
||
| 1929 | return M; |
||
| 1930 | #else // _XM_VMX128_INTRINSICS_ |
||
| 1931 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 1932 | } |
||
| 1933 | |||
| 1934 | //------------------------------------------------------------------------------ |
||
| 1935 | |||
| 1936 | XMFINLINE XMMATRIX XMMatrixShadow |
||
| 1937 | ( |
||
| 1938 | FXMVECTOR ShadowPlane, |
||
| 1939 | FXMVECTOR LightPosition |
||
| 1940 | ) |
||
| 1941 | { |
||
| 1942 | #if defined(_XM_NO_INTRINSICS_) |
||
| 1943 | |||
| 1944 | XMVECTOR P; |
||
| 1945 | XMVECTOR Dot; |
||
| 1946 | XMVECTOR A, B, C, D; |
||
| 1947 | XMMATRIX M; |
||
| 1948 | static CONST XMVECTORU32 Select0001 = {XM_SELECT_0, XM_SELECT_0, XM_SELECT_0, XM_SELECT_1}; |
||
| 1949 | |||
| 1950 | XMASSERT(!XMVector3Equal(ShadowPlane, XMVectorZero())); |
||
| 1951 | XMASSERT(!XMPlaneIsInfinite(ShadowPlane)); |
||
| 1952 | |||
| 1953 | P = XMPlaneNormalize(ShadowPlane); |
||
| 1954 | Dot = XMPlaneDot(P, LightPosition); |
||
| 1955 | P = XMVectorNegate(P); |
||
| 1956 | D = XMVectorSplatW(P); |
||
| 1957 | C = XMVectorSplatZ(P); |
||
| 1958 | B = XMVectorSplatY(P); |
||
| 1959 | A = XMVectorSplatX(P); |
||
| 1960 | Dot = XMVectorSelect(Select0001.v, Dot, Select0001.v); |
||
| 1961 | M.r[3] = XMVectorMultiplyAdd(D, LightPosition, Dot); |
||
| 1962 | Dot = XMVectorRotateLeft(Dot, 1); |
||
| 1963 | M.r[2] = XMVectorMultiplyAdd(C, LightPosition, Dot); |
||
| 1964 | Dot = XMVectorRotateLeft(Dot, 1); |
||
| 1965 | M.r[1] = XMVectorMultiplyAdd(B, LightPosition, Dot); |
||
| 1966 | Dot = XMVectorRotateLeft(Dot, 1); |
||
| 1967 | M.r[0] = XMVectorMultiplyAdd(A, LightPosition, Dot); |
||
| 1968 | return M; |
||
| 1969 | |||
| 1970 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 1971 | XMMATRIX M; |
||
| 1972 | XMASSERT(!XMVector3Equal(ShadowPlane, XMVectorZero())); |
||
| 1973 | XMASSERT(!XMPlaneIsInfinite(ShadowPlane)); |
||
| 1974 | XMVECTOR P = XMPlaneNormalize(ShadowPlane); |
||
| 1975 | XMVECTOR Dot = XMPlaneDot(P,LightPosition); |
||
| 1976 | // Negate |
||
| 1977 | P = _mm_mul_ps(P,g_XMNegativeOne); |
||
| 1978 | XMVECTOR X = _mm_shuffle_ps(P,P,_MM_SHUFFLE(0,0,0,0)); |
||
| 1979 | XMVECTOR Y = _mm_shuffle_ps(P,P,_MM_SHUFFLE(1,1,1,1)); |
||
| 1980 | XMVECTOR Z = _mm_shuffle_ps(P,P,_MM_SHUFFLE(2,2,2,2)); |
||
| 1981 | P = _mm_shuffle_ps(P,P,_MM_SHUFFLE(3,3,3,3)); |
||
| 1982 | Dot = _mm_and_ps(Dot,g_XMMaskW); |
||
| 1983 | X = _mm_mul_ps(X,LightPosition); |
||
| 1984 | Y = _mm_mul_ps(Y,LightPosition); |
||
| 1985 | Z = _mm_mul_ps(Z,LightPosition); |
||
| 1986 | P = _mm_mul_ps(P,LightPosition); |
||
| 1987 | P = _mm_add_ps(P,Dot); |
||
| 1988 | Dot = _mm_shuffle_ps(Dot,Dot,_MM_SHUFFLE(0,3,2,1)); |
||
| 1989 | Z = _mm_add_ps(Z,Dot); |
||
| 1990 | Dot = _mm_shuffle_ps(Dot,Dot,_MM_SHUFFLE(0,3,2,1)); |
||
| 1991 | Y = _mm_add_ps(Y,Dot); |
||
| 1992 | Dot = _mm_shuffle_ps(Dot,Dot,_MM_SHUFFLE(0,3,2,1)); |
||
| 1993 | X = _mm_add_ps(X,Dot); |
||
| 1994 | // Store the resulting matrix |
||
| 1995 | M.r[0] = X; |
||
| 1996 | M.r[1] = Y; |
||
| 1997 | M.r[2] = Z; |
||
| 1998 | M.r[3] = P; |
||
| 1999 | return M; |
||
| 2000 | #else // _XM_VMX128_INTRINSICS_ |
||
| 2001 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 2002 | } |
||
| 2003 | |||
| 2004 | //------------------------------------------------------------------------------ |
||
| 2005 | // View and projection initialization operations |
||
| 2006 | //------------------------------------------------------------------------------ |
||
| 2007 | |||
| 2008 | |||
| 2009 | //------------------------------------------------------------------------------ |
||
| 2010 | |||
| 2011 | XMFINLINE XMMATRIX XMMatrixLookAtLH |
||
| 2012 | ( |
||
| 2013 | FXMVECTOR EyePosition, |
||
| 2014 | FXMVECTOR FocusPosition, |
||
| 2015 | FXMVECTOR UpDirection |
||
| 2016 | ) |
||
| 2017 | { |
||
| 2018 | XMVECTOR EyeDirection; |
||
| 2019 | XMMATRIX M; |
||
| 2020 | |||
| 2021 | EyeDirection = XMVectorSubtract(FocusPosition, EyePosition); |
||
| 2022 | M = XMMatrixLookToLH(EyePosition, EyeDirection, UpDirection); |
||
| 2023 | |||
| 2024 | return M; |
||
| 2025 | } |
||
| 2026 | |||
| 2027 | //------------------------------------------------------------------------------ |
||
| 2028 | |||
| 2029 | XMFINLINE XMMATRIX XMMatrixLookAtRH |
||
| 2030 | ( |
||
| 2031 | FXMVECTOR EyePosition, |
||
| 2032 | FXMVECTOR FocusPosition, |
||
| 2033 | FXMVECTOR UpDirection |
||
| 2034 | ) |
||
| 2035 | { |
||
| 2036 | XMVECTOR NegEyeDirection; |
||
| 2037 | XMMATRIX M; |
||
| 2038 | |||
| 2039 | NegEyeDirection = XMVectorSubtract(EyePosition, FocusPosition); |
||
| 2040 | M = XMMatrixLookToLH(EyePosition, NegEyeDirection, UpDirection); |
||
| 2041 | |||
| 2042 | return M; |
||
| 2043 | } |
||
| 2044 | |||
| 2045 | //------------------------------------------------------------------------------ |
||
| 2046 | |||
| 2047 | XMINLINE XMMATRIX XMMatrixLookToLH |
||
| 2048 | ( |
||
| 2049 | FXMVECTOR EyePosition, |
||
| 2050 | FXMVECTOR EyeDirection, |
||
| 2051 | FXMVECTOR UpDirection |
||
| 2052 | ) |
||
| 2053 | { |
||
| 2054 | #if defined(_XM_NO_INTRINSICS_) |
||
| 2055 | |||
| 2056 | XMVECTOR NegEyePosition; |
||
| 2057 | XMVECTOR D0, D1, D2; |
||
| 2058 | XMVECTOR R0, R1, R2; |
||
| 2059 | XMMATRIX M; |
||
| 2060 | |||
| 2061 | XMASSERT(!XMVector3Equal(EyeDirection, XMVectorZero())); |
||
| 2062 | XMASSERT(!XMVector3IsInfinite(EyeDirection)); |
||
| 2063 | XMASSERT(!XMVector3Equal(UpDirection, XMVectorZero())); |
||
| 2064 | XMASSERT(!XMVector3IsInfinite(UpDirection)); |
||
| 2065 | |||
| 2066 | R2 = XMVector3Normalize(EyeDirection); |
||
| 2067 | |||
| 2068 | R0 = XMVector3Cross(UpDirection, R2); |
||
| 2069 | R0 = XMVector3Normalize(R0); |
||
| 2070 | |||
| 2071 | R1 = XMVector3Cross(R2, R0); |
||
| 2072 | |||
| 2073 | NegEyePosition = XMVectorNegate(EyePosition); |
||
| 2074 | |||
| 2075 | D0 = XMVector3Dot(R0, NegEyePosition); |
||
| 2076 | D1 = XMVector3Dot(R1, NegEyePosition); |
||
| 2077 | D2 = XMVector3Dot(R2, NegEyePosition); |
||
| 2078 | |||
| 2079 | M.r[0] = XMVectorSelect(D0, R0, g_XMSelect1110.v); |
||
| 2080 | M.r[1] = XMVectorSelect(D1, R1, g_XMSelect1110.v); |
||
| 2081 | M.r[2] = XMVectorSelect(D2, R2, g_XMSelect1110.v); |
||
| 2082 | M.r[3] = g_XMIdentityR3.v; |
||
| 2083 | |||
| 2084 | M = XMMatrixTranspose(M); |
||
| 2085 | |||
| 2086 | return M; |
||
| 2087 | |||
| 2088 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 2089 | XMMATRIX M; |
||
| 2090 | |||
| 2091 | XMASSERT(!XMVector3Equal(EyeDirection, XMVectorZero())); |
||
| 2092 | XMASSERT(!XMVector3IsInfinite(EyeDirection)); |
||
| 2093 | XMASSERT(!XMVector3Equal(UpDirection, XMVectorZero())); |
||
| 2094 | XMASSERT(!XMVector3IsInfinite(UpDirection)); |
||
| 2095 | |||
| 2096 | XMVECTOR R2 = XMVector3Normalize(EyeDirection); |
||
| 2097 | XMVECTOR R0 = XMVector3Cross(UpDirection, R2); |
||
| 2098 | R0 = XMVector3Normalize(R0); |
||
| 2099 | XMVECTOR R1 = XMVector3Cross(R2,R0); |
||
| 2100 | XMVECTOR NegEyePosition = _mm_mul_ps(EyePosition,g_XMNegativeOne); |
||
| 2101 | XMVECTOR D0 = XMVector3Dot(R0,NegEyePosition); |
||
| 2102 | XMVECTOR D1 = XMVector3Dot(R1,NegEyePosition); |
||
| 2103 | XMVECTOR D2 = XMVector3Dot(R2,NegEyePosition); |
||
| 2104 | R0 = _mm_and_ps(R0,g_XMMask3); |
||
| 2105 | R1 = _mm_and_ps(R1,g_XMMask3); |
||
| 2106 | R2 = _mm_and_ps(R2,g_XMMask3); |
||
| 2107 | D0 = _mm_and_ps(D0,g_XMMaskW); |
||
| 2108 | D1 = _mm_and_ps(D1,g_XMMaskW); |
||
| 2109 | D2 = _mm_and_ps(D2,g_XMMaskW); |
||
| 2110 | D0 = _mm_or_ps(D0,R0); |
||
| 2111 | D1 = _mm_or_ps(D1,R1); |
||
| 2112 | D2 = _mm_or_ps(D2,R2); |
||
| 2113 | M.r[0] = D0; |
||
| 2114 | M.r[1] = D1; |
||
| 2115 | M.r[2] = D2; |
||
| 2116 | M.r[3] = g_XMIdentityR3; |
||
| 2117 | M = XMMatrixTranspose(M); |
||
| 2118 | return M; |
||
| 2119 | #else // _XM_VMX128_INTRINSICS_ |
||
| 2120 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 2121 | } |
||
| 2122 | |||
| 2123 | //------------------------------------------------------------------------------ |
||
| 2124 | |||
| 2125 | XMFINLINE XMMATRIX XMMatrixLookToRH |
||
| 2126 | ( |
||
| 2127 | FXMVECTOR EyePosition, |
||
| 2128 | FXMVECTOR EyeDirection, |
||
| 2129 | FXMVECTOR UpDirection |
||
| 2130 | ) |
||
| 2131 | { |
||
| 2132 | XMVECTOR NegEyeDirection; |
||
| 2133 | XMMATRIX M; |
||
| 2134 | |||
| 2135 | NegEyeDirection = XMVectorNegate(EyeDirection); |
||
| 2136 | M = XMMatrixLookToLH(EyePosition, NegEyeDirection, UpDirection); |
||
| 2137 | |||
| 2138 | return M; |
||
| 2139 | } |
||
| 2140 | |||
| 2141 | //------------------------------------------------------------------------------ |
||
| 2142 | |||
| 2143 | XMFINLINE XMMATRIX XMMatrixPerspectiveLH |
||
| 2144 | ( |
||
| 2145 | FLOAT ViewWidth, |
||
| 2146 | FLOAT ViewHeight, |
||
| 2147 | FLOAT NearZ, |
||
| 2148 | FLOAT FarZ |
||
| 2149 | ) |
||
| 2150 | { |
||
| 2151 | #if defined(_XM_NO_INTRINSICS_) |
||
| 2152 | |||
| 2153 | FLOAT TwoNearZ, fRange; |
||
| 2154 | XMMATRIX M; |
||
| 2155 | |||
| 2156 | XMASSERT(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f)); |
||
| 2157 | XMASSERT(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f)); |
||
| 2158 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2159 | |||
| 2160 | TwoNearZ = NearZ + NearZ; |
||
| 2161 | fRange = FarZ / (FarZ - NearZ); |
||
| 2162 | M.m[0][0] = TwoNearZ / ViewWidth; |
||
| 2163 | M.m[0][1] = 0.0f; |
||
| 2164 | M.m[0][2] = 0.0f; |
||
| 2165 | M.m[0][3] = 0.0f; |
||
| 2166 | |||
| 2167 | M.m[1][0] = 0.0f; |
||
| 2168 | M.m[1][1] = TwoNearZ / ViewHeight; |
||
| 2169 | M.m[1][2] = 0.0f; |
||
| 2170 | M.m[1][3] = 0.0f; |
||
| 2171 | |||
| 2172 | M.m[2][0] = 0.0f; |
||
| 2173 | M.m[2][1] = 0.0f; |
||
| 2174 | M.m[2][2] = fRange; |
||
| 2175 | M.m[2][3] = 1.0f; |
||
| 2176 | |||
| 2177 | M.m[3][0] = 0.0f; |
||
| 2178 | M.m[3][1] = 0.0f; |
||
| 2179 | M.m[3][2] = -fRange * NearZ; |
||
| 2180 | M.m[3][3] = 0.0f; |
||
| 2181 | |||
| 2182 | return M; |
||
| 2183 | |||
| 2184 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 2185 | XMASSERT(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f)); |
||
| 2186 | XMASSERT(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f)); |
||
| 2187 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2188 | |||
| 2189 | XMMATRIX M; |
||
| 2190 | FLOAT TwoNearZ = NearZ + NearZ; |
||
| 2191 | FLOAT fRange = FarZ / (FarZ - NearZ); |
||
| 2192 | // Note: This is recorded on the stack |
||
| 2193 | XMVECTOR rMem = { |
||
| 2194 | TwoNearZ / ViewWidth, |
||
| 2195 | TwoNearZ / ViewHeight, |
||
| 2196 | fRange, |
||
| 2197 | -fRange * NearZ |
||
| 2198 | }; |
||
| 2199 | // Copy from memory to SSE register |
||
| 2200 | XMVECTOR vValues = rMem; |
||
| 2201 | XMVECTOR vTemp = _mm_setzero_ps(); |
||
| 2202 | // Copy x only |
||
| 2203 | vTemp = _mm_move_ss(vTemp,vValues); |
||
| 2204 | // TwoNearZ / ViewWidth,0,0,0 |
||
| 2205 | M.r[0] = vTemp; |
||
| 2206 | // 0,TwoNearZ / ViewHeight,0,0 |
||
| 2207 | vTemp = vValues; |
||
| 2208 | vTemp = _mm_and_ps(vTemp,g_XMMaskY); |
||
| 2209 | M.r[1] = vTemp; |
||
| 2210 | // x=fRange,y=-fRange * NearZ,0,1.0f |
||
| 2211 | vValues = _mm_shuffle_ps(vValues,g_XMIdentityR3,_MM_SHUFFLE(3,2,3,2)); |
||
| 2212 | // 0,0,fRange,1.0f |
||
| 2213 | vTemp = _mm_setzero_ps(); |
||
| 2214 | vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(3,0,0,0)); |
||
| 2215 | M.r[2] = vTemp; |
||
| 2216 | // 0,0,-fRange * NearZ,0 |
||
| 2217 | vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(2,1,0,0)); |
||
| 2218 | M.r[3] = vTemp; |
||
| 2219 | |||
| 2220 | return M; |
||
| 2221 | #else // _XM_VMX128_INTRINSICS_ |
||
| 2222 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 2223 | } |
||
| 2224 | |||
| 2225 | //------------------------------------------------------------------------------ |
||
| 2226 | |||
| 2227 | XMFINLINE XMMATRIX XMMatrixPerspectiveRH |
||
| 2228 | ( |
||
| 2229 | FLOAT ViewWidth, |
||
| 2230 | FLOAT ViewHeight, |
||
| 2231 | FLOAT NearZ, |
||
| 2232 | FLOAT FarZ |
||
| 2233 | ) |
||
| 2234 | { |
||
| 2235 | #if defined(_XM_NO_INTRINSICS_) |
||
| 2236 | |||
| 2237 | FLOAT TwoNearZ, fRange; |
||
| 2238 | XMMATRIX M; |
||
| 2239 | |||
| 2240 | XMASSERT(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f)); |
||
| 2241 | XMASSERT(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f)); |
||
| 2242 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2243 | |||
| 2244 | TwoNearZ = NearZ + NearZ; |
||
| 2245 | fRange = FarZ / (NearZ - FarZ); |
||
| 2246 | M.m[0][0] = TwoNearZ / ViewWidth; |
||
| 2247 | M.m[0][1] = 0.0f; |
||
| 2248 | M.m[0][2] = 0.0f; |
||
| 2249 | M.m[0][3] = 0.0f; |
||
| 2250 | |||
| 2251 | M.m[1][0] = 0.0f; |
||
| 2252 | M.m[1][1] = TwoNearZ / ViewHeight; |
||
| 2253 | M.m[1][2] = 0.0f; |
||
| 2254 | M.m[1][3] = 0.0f; |
||
| 2255 | |||
| 2256 | M.m[2][0] = 0.0f; |
||
| 2257 | M.m[2][1] = 0.0f; |
||
| 2258 | M.m[2][2] = fRange; |
||
| 2259 | M.m[2][3] = -1.0f; |
||
| 2260 | |||
| 2261 | M.m[3][0] = 0.0f; |
||
| 2262 | M.m[3][1] = 0.0f; |
||
| 2263 | M.m[3][2] = fRange * NearZ; |
||
| 2264 | M.m[3][3] = 0.0f; |
||
| 2265 | |||
| 2266 | return M; |
||
| 2267 | |||
| 2268 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 2269 | XMASSERT(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f)); |
||
| 2270 | XMASSERT(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f)); |
||
| 2271 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2272 | |||
| 2273 | XMMATRIX M; |
||
| 2274 | FLOAT TwoNearZ = NearZ + NearZ; |
||
| 2275 | FLOAT fRange = FarZ / (NearZ-FarZ); |
||
| 2276 | // Note: This is recorded on the stack |
||
| 2277 | XMVECTOR rMem = { |
||
| 2278 | TwoNearZ / ViewWidth, |
||
| 2279 | TwoNearZ / ViewHeight, |
||
| 2280 | fRange, |
||
| 2281 | fRange * NearZ |
||
| 2282 | }; |
||
| 2283 | // Copy from memory to SSE register |
||
| 2284 | XMVECTOR vValues = rMem; |
||
| 2285 | XMVECTOR vTemp = _mm_setzero_ps(); |
||
| 2286 | // Copy x only |
||
| 2287 | vTemp = _mm_move_ss(vTemp,vValues); |
||
| 2288 | // TwoNearZ / ViewWidth,0,0,0 |
||
| 2289 | M.r[0] = vTemp; |
||
| 2290 | // 0,TwoNearZ / ViewHeight,0,0 |
||
| 2291 | vTemp = vValues; |
||
| 2292 | vTemp = _mm_and_ps(vTemp,g_XMMaskY); |
||
| 2293 | M.r[1] = vTemp; |
||
| 2294 | // x=fRange,y=-fRange * NearZ,0,-1.0f |
||
| 2295 | vValues = _mm_shuffle_ps(vValues,g_XMNegIdentityR3,_MM_SHUFFLE(3,2,3,2)); |
||
| 2296 | // 0,0,fRange,-1.0f |
||
| 2297 | vTemp = _mm_setzero_ps(); |
||
| 2298 | vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(3,0,0,0)); |
||
| 2299 | M.r[2] = vTemp; |
||
| 2300 | // 0,0,-fRange * NearZ,0 |
||
| 2301 | vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(2,1,0,0)); |
||
| 2302 | M.r[3] = vTemp; |
||
| 2303 | return M; |
||
| 2304 | #else // _XM_VMX128_INTRINSICS_ |
||
| 2305 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 2306 | } |
||
| 2307 | |||
| 2308 | //------------------------------------------------------------------------------ |
||
| 2309 | |||
| 2310 | XMFINLINE XMMATRIX XMMatrixPerspectiveFovLH |
||
| 2311 | ( |
||
| 2312 | FLOAT FovAngleY, |
||
| 2313 | FLOAT AspectHByW, |
||
| 2314 | FLOAT NearZ, |
||
| 2315 | FLOAT FarZ |
||
| 2316 | ) |
||
| 2317 | { |
||
| 2318 | #if defined(_XM_NO_INTRINSICS_) |
||
| 2319 | |||
| 2320 | FLOAT SinFov; |
||
| 2321 | FLOAT CosFov; |
||
| 2322 | FLOAT Height; |
||
| 2323 | FLOAT Width; |
||
| 2324 | XMMATRIX M; |
||
| 2325 | |||
| 2326 | XMASSERT(!XMScalarNearEqual(FovAngleY, 0.0f, 0.00001f * 2.0f)); |
||
| 2327 | XMASSERT(!XMScalarNearEqual(AspectHByW, 0.0f, 0.00001f)); |
||
| 2328 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2329 | |||
| 2330 | XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY); |
||
| 2331 | |||
| 2332 | Height = CosFov / SinFov; |
||
| 2333 | Width = Height / AspectHByW; |
||
| 2334 | |||
| 2335 | M.r[0] = XMVectorSet(Width, 0.0f, 0.0f, 0.0f); |
||
| 2336 | M.r[1] = XMVectorSet(0.0f, Height, 0.0f, 0.0f); |
||
| 2337 | M.r[2] = XMVectorSet(0.0f, 0.0f, FarZ / (FarZ - NearZ), 1.0f); |
||
| 2338 | M.r[3] = XMVectorSet(0.0f, 0.0f, -M.r[2].vector4_f32[2] * NearZ, 0.0f); |
||
| 2339 | |||
| 2340 | return M; |
||
| 2341 | |||
| 2342 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 2343 | XMASSERT(!XMScalarNearEqual(FovAngleY, 0.0f, 0.00001f * 2.0f)); |
||
| 2344 | XMASSERT(!XMScalarNearEqual(AspectHByW, 0.0f, 0.00001f)); |
||
| 2345 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2346 | XMMATRIX M; |
||
| 2347 | FLOAT SinFov; |
||
| 2348 | FLOAT CosFov; |
||
| 2349 | XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY); |
||
| 2350 | FLOAT fRange = FarZ / (FarZ-NearZ); |
||
| 2351 | // Note: This is recorded on the stack |
||
| 2352 | FLOAT Height = CosFov / SinFov; |
||
| 2353 | XMVECTOR rMem = { |
||
| 2354 | Height / AspectHByW, |
||
| 2355 | Height, |
||
| 2356 | fRange, |
||
| 2357 | -fRange * NearZ |
||
| 2358 | }; |
||
| 2359 | // Copy from memory to SSE register |
||
| 2360 | XMVECTOR vValues = rMem; |
||
| 2361 | XMVECTOR vTemp = _mm_setzero_ps(); |
||
| 2362 | // Copy x only |
||
| 2363 | vTemp = _mm_move_ss(vTemp,vValues); |
||
| 2364 | // CosFov / SinFov,0,0,0 |
||
| 2365 | M.r[0] = vTemp; |
||
| 2366 | // 0,Height / AspectHByW,0,0 |
||
| 2367 | vTemp = vValues; |
||
| 2368 | vTemp = _mm_and_ps(vTemp,g_XMMaskY); |
||
| 2369 | M.r[1] = vTemp; |
||
| 2370 | // x=fRange,y=-fRange * NearZ,0,1.0f |
||
| 2371 | vTemp = _mm_setzero_ps(); |
||
| 2372 | vValues = _mm_shuffle_ps(vValues,g_XMIdentityR3,_MM_SHUFFLE(3,2,3,2)); |
||
| 2373 | // 0,0,fRange,1.0f |
||
| 2374 | vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(3,0,0,0)); |
||
| 2375 | M.r[2] = vTemp; |
||
| 2376 | // 0,0,-fRange * NearZ,0.0f |
||
| 2377 | vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(2,1,0,0)); |
||
| 2378 | M.r[3] = vTemp; |
||
| 2379 | return M; |
||
| 2380 | #else // _XM_VMX128_INTRINSICS_ |
||
| 2381 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 2382 | } |
||
| 2383 | |||
| 2384 | //------------------------------------------------------------------------------ |
||
| 2385 | |||
| 2386 | XMFINLINE XMMATRIX XMMatrixPerspectiveFovRH |
||
| 2387 | ( |
||
| 2388 | FLOAT FovAngleY, |
||
| 2389 | FLOAT AspectHByW, |
||
| 2390 | FLOAT NearZ, |
||
| 2391 | FLOAT FarZ |
||
| 2392 | ) |
||
| 2393 | { |
||
| 2394 | #if defined(_XM_NO_INTRINSICS_) |
||
| 2395 | |||
| 2396 | FLOAT SinFov; |
||
| 2397 | FLOAT CosFov; |
||
| 2398 | FLOAT Height; |
||
| 2399 | FLOAT Width; |
||
| 2400 | XMMATRIX M; |
||
| 2401 | |||
| 2402 | XMASSERT(!XMScalarNearEqual(FovAngleY, 0.0f, 0.00001f * 2.0f)); |
||
| 2403 | XMASSERT(!XMScalarNearEqual(AspectHByW, 0.0f, 0.00001f)); |
||
| 2404 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2405 | |||
| 2406 | XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY); |
||
| 2407 | |||
| 2408 | Height = CosFov / SinFov; |
||
| 2409 | Width = Height / AspectHByW; |
||
| 2410 | |||
| 2411 | M.r[0] = XMVectorSet(Width, 0.0f, 0.0f, 0.0f); |
||
| 2412 | M.r[1] = XMVectorSet(0.0f, Height, 0.0f, 0.0f); |
||
| 2413 | M.r[2] = XMVectorSet(0.0f, 0.0f, FarZ / (NearZ - FarZ), -1.0f); |
||
| 2414 | M.r[3] = XMVectorSet(0.0f, 0.0f, M.r[2].vector4_f32[2] * NearZ, 0.0f); |
||
| 2415 | |||
| 2416 | return M; |
||
| 2417 | |||
| 2418 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 2419 | XMASSERT(!XMScalarNearEqual(FovAngleY, 0.0f, 0.00001f * 2.0f)); |
||
| 2420 | XMASSERT(!XMScalarNearEqual(AspectHByW, 0.0f, 0.00001f)); |
||
| 2421 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2422 | XMMATRIX M; |
||
| 2423 | FLOAT SinFov; |
||
| 2424 | FLOAT CosFov; |
||
| 2425 | XMScalarSinCos(&SinFov, &CosFov, 0.5f * FovAngleY); |
||
| 2426 | FLOAT fRange = FarZ / (NearZ-FarZ); |
||
| 2427 | // Note: This is recorded on the stack |
||
| 2428 | FLOAT Height = CosFov / SinFov; |
||
| 2429 | XMVECTOR rMem = { |
||
| 2430 | Height / AspectHByW, |
||
| 2431 | Height, |
||
| 2432 | fRange, |
||
| 2433 | fRange * NearZ |
||
| 2434 | }; |
||
| 2435 | // Copy from memory to SSE register |
||
| 2436 | XMVECTOR vValues = rMem; |
||
| 2437 | XMVECTOR vTemp = _mm_setzero_ps(); |
||
| 2438 | // Copy x only |
||
| 2439 | vTemp = _mm_move_ss(vTemp,vValues); |
||
| 2440 | // CosFov / SinFov,0,0,0 |
||
| 2441 | M.r[0] = vTemp; |
||
| 2442 | // 0,Height / AspectHByW,0,0 |
||
| 2443 | vTemp = vValues; |
||
| 2444 | vTemp = _mm_and_ps(vTemp,g_XMMaskY); |
||
| 2445 | M.r[1] = vTemp; |
||
| 2446 | // x=fRange,y=-fRange * NearZ,0,-1.0f |
||
| 2447 | vTemp = _mm_setzero_ps(); |
||
| 2448 | vValues = _mm_shuffle_ps(vValues,g_XMNegIdentityR3,_MM_SHUFFLE(3,2,3,2)); |
||
| 2449 | // 0,0,fRange,-1.0f |
||
| 2450 | vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(3,0,0,0)); |
||
| 2451 | M.r[2] = vTemp; |
||
| 2452 | // 0,0,fRange * NearZ,0.0f |
||
| 2453 | vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(2,1,0,0)); |
||
| 2454 | M.r[3] = vTemp; |
||
| 2455 | return M; |
||
| 2456 | #else // _XM_VMX128_INTRINSICS_ |
||
| 2457 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 2458 | } |
||
| 2459 | |||
| 2460 | //------------------------------------------------------------------------------ |
||
| 2461 | |||
| 2462 | XMFINLINE XMMATRIX XMMatrixPerspectiveOffCenterLH |
||
| 2463 | ( |
||
| 2464 | FLOAT ViewLeft, |
||
| 2465 | FLOAT ViewRight, |
||
| 2466 | FLOAT ViewBottom, |
||
| 2467 | FLOAT ViewTop, |
||
| 2468 | FLOAT NearZ, |
||
| 2469 | FLOAT FarZ |
||
| 2470 | ) |
||
| 2471 | { |
||
| 2472 | #if defined(_XM_NO_INTRINSICS_) |
||
| 2473 | |||
| 2474 | FLOAT TwoNearZ; |
||
| 2475 | FLOAT ReciprocalWidth; |
||
| 2476 | FLOAT ReciprocalHeight; |
||
| 2477 | XMMATRIX M; |
||
| 2478 | |||
| 2479 | XMASSERT(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f)); |
||
| 2480 | XMASSERT(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f)); |
||
| 2481 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2482 | |||
| 2483 | TwoNearZ = NearZ + NearZ; |
||
| 2484 | ReciprocalWidth = 1.0f / (ViewRight - ViewLeft); |
||
| 2485 | ReciprocalHeight = 1.0f / (ViewTop - ViewBottom); |
||
| 2486 | |||
| 2487 | M.r[0] = XMVectorSet(TwoNearZ * ReciprocalWidth, 0.0f, 0.0f, 0.0f); |
||
| 2488 | M.r[1] = XMVectorSet(0.0f, TwoNearZ * ReciprocalHeight, 0.0f, 0.0f); |
||
| 2489 | M.r[2] = XMVectorSet(-(ViewLeft + ViewRight) * ReciprocalWidth, |
||
| 2490 | -(ViewTop + ViewBottom) * ReciprocalHeight, |
||
| 2491 | FarZ / (FarZ - NearZ), |
||
| 2492 | 1.0f); |
||
| 2493 | M.r[3] = XMVectorSet(0.0f, 0.0f, -M.r[2].vector4_f32[2] * NearZ, 0.0f); |
||
| 2494 | |||
| 2495 | return M; |
||
| 2496 | |||
| 2497 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 2498 | XMASSERT(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f)); |
||
| 2499 | XMASSERT(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f)); |
||
| 2500 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2501 | XMMATRIX M; |
||
| 2502 | FLOAT TwoNearZ = NearZ+NearZ; |
||
| 2503 | FLOAT ReciprocalWidth = 1.0f / (ViewRight - ViewLeft); |
||
| 2504 | FLOAT ReciprocalHeight = 1.0f / (ViewTop - ViewBottom); |
||
| 2505 | FLOAT fRange = FarZ / (FarZ-NearZ); |
||
| 2506 | // Note: This is recorded on the stack |
||
| 2507 | XMVECTOR rMem = { |
||
| 2508 | TwoNearZ*ReciprocalWidth, |
||
| 2509 | TwoNearZ*ReciprocalHeight, |
||
| 2510 | -fRange * NearZ, |
||
| 2511 | |||
| 2512 | }; |
||
| 2513 | // Copy from memory to SSE register |
||
| 2514 | XMVECTOR vValues = rMem; |
||
| 2515 | XMVECTOR vTemp = _mm_setzero_ps(); |
||
| 2516 | // Copy x only |
||
| 2517 | vTemp = _mm_move_ss(vTemp,vValues); |
||
| 2518 | // TwoNearZ*ReciprocalWidth,0,0,0 |
||
| 2519 | M.r[0] = vTemp; |
||
| 2520 | // 0,TwoNearZ*ReciprocalHeight,0,0 |
||
| 2521 | vTemp = vValues; |
||
| 2522 | vTemp = _mm_and_ps(vTemp,g_XMMaskY); |
||
| 2523 | M.r[1] = vTemp; |
||
| 2524 | // 0,0,fRange,1.0f |
||
| 2525 | M.m[2][0] = -(ViewLeft + ViewRight) * ReciprocalWidth; |
||
| 2526 | M.m[2][1] = -(ViewTop + ViewBottom) * ReciprocalHeight; |
||
| 2527 | M.m[2][2] = fRange; |
||
| 2528 | M.m[2][3] = 1.0f; |
||
| 2529 | // 0,0,-fRange * NearZ,0.0f |
||
| 2530 | vValues = _mm_and_ps(vValues,g_XMMaskZ); |
||
| 2531 | M.r[3] = vValues; |
||
| 2532 | return M; |
||
| 2533 | #else // _XM_VMX128_INTRINSICS_ |
||
| 2534 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 2535 | } |
||
| 2536 | |||
| 2537 | //------------------------------------------------------------------------------ |
||
| 2538 | |||
| 2539 | XMFINLINE XMMATRIX XMMatrixPerspectiveOffCenterRH |
||
| 2540 | ( |
||
| 2541 | FLOAT ViewLeft, |
||
| 2542 | FLOAT ViewRight, |
||
| 2543 | FLOAT ViewBottom, |
||
| 2544 | FLOAT ViewTop, |
||
| 2545 | FLOAT NearZ, |
||
| 2546 | FLOAT FarZ |
||
| 2547 | ) |
||
| 2548 | { |
||
| 2549 | #if defined(_XM_NO_INTRINSICS_) |
||
| 2550 | |||
| 2551 | FLOAT TwoNearZ; |
||
| 2552 | FLOAT ReciprocalWidth; |
||
| 2553 | FLOAT ReciprocalHeight; |
||
| 2554 | XMMATRIX M; |
||
| 2555 | |||
| 2556 | XMASSERT(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f)); |
||
| 2557 | XMASSERT(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f)); |
||
| 2558 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2559 | |||
| 2560 | TwoNearZ = NearZ + NearZ; |
||
| 2561 | ReciprocalWidth = 1.0f / (ViewRight - ViewLeft); |
||
| 2562 | ReciprocalHeight = 1.0f / (ViewTop - ViewBottom); |
||
| 2563 | |||
| 2564 | M.r[0] = XMVectorSet(TwoNearZ * ReciprocalWidth, 0.0f, 0.0f, 0.0f); |
||
| 2565 | M.r[1] = XMVectorSet(0.0f, TwoNearZ * ReciprocalHeight, 0.0f, 0.0f); |
||
| 2566 | M.r[2] = XMVectorSet((ViewLeft + ViewRight) * ReciprocalWidth, |
||
| 2567 | (ViewTop + ViewBottom) * ReciprocalHeight, |
||
| 2568 | FarZ / (NearZ - FarZ), |
||
| 2569 | -1.0f); |
||
| 2570 | M.r[3] = XMVectorSet(0.0f, 0.0f, M.r[2].vector4_f32[2] * NearZ, 0.0f); |
||
| 2571 | |||
| 2572 | return M; |
||
| 2573 | |||
| 2574 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 2575 | XMASSERT(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f)); |
||
| 2576 | XMASSERT(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f)); |
||
| 2577 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2578 | |||
| 2579 | XMMATRIX M; |
||
| 2580 | FLOAT TwoNearZ = NearZ+NearZ; |
||
| 2581 | FLOAT ReciprocalWidth = 1.0f / (ViewRight - ViewLeft); |
||
| 2582 | FLOAT ReciprocalHeight = 1.0f / (ViewTop - ViewBottom); |
||
| 2583 | FLOAT fRange = FarZ / (NearZ-FarZ); |
||
| 2584 | // Note: This is recorded on the stack |
||
| 2585 | XMVECTOR rMem = { |
||
| 2586 | TwoNearZ*ReciprocalWidth, |
||
| 2587 | TwoNearZ*ReciprocalHeight, |
||
| 2588 | fRange * NearZ, |
||
| 2589 | |||
| 2590 | }; |
||
| 2591 | // Copy from memory to SSE register |
||
| 2592 | XMVECTOR vValues = rMem; |
||
| 2593 | XMVECTOR vTemp = _mm_setzero_ps(); |
||
| 2594 | // Copy x only |
||
| 2595 | vTemp = _mm_move_ss(vTemp,vValues); |
||
| 2596 | // TwoNearZ*ReciprocalWidth,0,0,0 |
||
| 2597 | M.r[0] = vTemp; |
||
| 2598 | // 0,TwoNearZ*ReciprocalHeight,0,0 |
||
| 2599 | vTemp = vValues; |
||
| 2600 | vTemp = _mm_and_ps(vTemp,g_XMMaskY); |
||
| 2601 | M.r[1] = vTemp; |
||
| 2602 | // 0,0,fRange,1.0f |
||
| 2603 | M.m[2][0] = (ViewLeft + ViewRight) * ReciprocalWidth; |
||
| 2604 | M.m[2][1] = (ViewTop + ViewBottom) * ReciprocalHeight; |
||
| 2605 | M.m[2][2] = fRange; |
||
| 2606 | M.m[2][3] = -1.0f; |
||
| 2607 | // 0,0,-fRange * NearZ,0.0f |
||
| 2608 | vValues = _mm_and_ps(vValues,g_XMMaskZ); |
||
| 2609 | M.r[3] = vValues; |
||
| 2610 | return M; |
||
| 2611 | #else // _XM_VMX128_INTRINSICS_ |
||
| 2612 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 2613 | } |
||
| 2614 | |||
| 2615 | //------------------------------------------------------------------------------ |
||
| 2616 | |||
| 2617 | XMFINLINE XMMATRIX XMMatrixOrthographicLH |
||
| 2618 | ( |
||
| 2619 | FLOAT ViewWidth, |
||
| 2620 | FLOAT ViewHeight, |
||
| 2621 | FLOAT NearZ, |
||
| 2622 | FLOAT FarZ |
||
| 2623 | ) |
||
| 2624 | { |
||
| 2625 | #if defined(_XM_NO_INTRINSICS_) |
||
| 2626 | |||
| 2627 | FLOAT fRange; |
||
| 2628 | XMMATRIX M; |
||
| 2629 | |||
| 2630 | XMASSERT(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f)); |
||
| 2631 | XMASSERT(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f)); |
||
| 2632 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2633 | |||
| 2634 | fRange = 1.0f / (FarZ-NearZ); |
||
| 2635 | M.r[0] = XMVectorSet(2.0f / ViewWidth, 0.0f, 0.0f, 0.0f); |
||
| 2636 | M.r[1] = XMVectorSet(0.0f, 2.0f / ViewHeight, 0.0f, 0.0f); |
||
| 2637 | M.r[2] = XMVectorSet(0.0f, 0.0f, fRange, 0.0f); |
||
| 2638 | M.r[3] = XMVectorSet(0.0f, 0.0f, -fRange * NearZ, 1.0f); |
||
| 2639 | |||
| 2640 | return M; |
||
| 2641 | |||
| 2642 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 2643 | XMASSERT(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f)); |
||
| 2644 | XMASSERT(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f)); |
||
| 2645 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2646 | XMMATRIX M; |
||
| 2647 | FLOAT fRange = 1.0f / (FarZ-NearZ); |
||
| 2648 | // Note: This is recorded on the stack |
||
| 2649 | XMVECTOR rMem = { |
||
| 2650 | 2.0f / ViewWidth, |
||
| 2651 | 2.0f / ViewHeight, |
||
| 2652 | fRange, |
||
| 2653 | -fRange * NearZ |
||
| 2654 | }; |
||
| 2655 | // Copy from memory to SSE register |
||
| 2656 | XMVECTOR vValues = rMem; |
||
| 2657 | XMVECTOR vTemp = _mm_setzero_ps(); |
||
| 2658 | // Copy x only |
||
| 2659 | vTemp = _mm_move_ss(vTemp,vValues); |
||
| 2660 | // 2.0f / ViewWidth,0,0,0 |
||
| 2661 | M.r[0] = vTemp; |
||
| 2662 | // 0,2.0f / ViewHeight,0,0 |
||
| 2663 | vTemp = vValues; |
||
| 2664 | vTemp = _mm_and_ps(vTemp,g_XMMaskY); |
||
| 2665 | M.r[1] = vTemp; |
||
| 2666 | // x=fRange,y=-fRange * NearZ,0,1.0f |
||
| 2667 | vTemp = _mm_setzero_ps(); |
||
| 2668 | vValues = _mm_shuffle_ps(vValues,g_XMIdentityR3,_MM_SHUFFLE(3,2,3,2)); |
||
| 2669 | // 0,0,fRange,0.0f |
||
| 2670 | vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(2,0,0,0)); |
||
| 2671 | M.r[2] = vTemp; |
||
| 2672 | // 0,0,-fRange * NearZ,1.0f |
||
| 2673 | vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(3,1,0,0)); |
||
| 2674 | M.r[3] = vTemp; |
||
| 2675 | return M; |
||
| 2676 | #else // _XM_VMX128_INTRINSICS_ |
||
| 2677 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 2678 | } |
||
| 2679 | |||
| 2680 | //------------------------------------------------------------------------------ |
||
| 2681 | |||
| 2682 | XMFINLINE XMMATRIX XMMatrixOrthographicRH |
||
| 2683 | ( |
||
| 2684 | FLOAT ViewWidth, |
||
| 2685 | FLOAT ViewHeight, |
||
| 2686 | FLOAT NearZ, |
||
| 2687 | FLOAT FarZ |
||
| 2688 | ) |
||
| 2689 | { |
||
| 2690 | #if defined(_XM_NO_INTRINSICS_) |
||
| 2691 | |||
| 2692 | XMMATRIX M; |
||
| 2693 | |||
| 2694 | XMASSERT(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f)); |
||
| 2695 | XMASSERT(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f)); |
||
| 2696 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2697 | |||
| 2698 | M.r[0] = XMVectorSet(2.0f / ViewWidth, 0.0f, 0.0f, 0.0f); |
||
| 2699 | M.r[1] = XMVectorSet(0.0f, 2.0f / ViewHeight, 0.0f, 0.0f); |
||
| 2700 | M.r[2] = XMVectorSet(0.0f, 0.0f, 1.0f / (NearZ - FarZ), 0.0f); |
||
| 2701 | M.r[3] = XMVectorSet(0.0f, 0.0f, M.r[2].vector4_f32[2] * NearZ, 1.0f); |
||
| 2702 | |||
| 2703 | return M; |
||
| 2704 | |||
| 2705 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 2706 | XMASSERT(!XMScalarNearEqual(ViewWidth, 0.0f, 0.00001f)); |
||
| 2707 | XMASSERT(!XMScalarNearEqual(ViewHeight, 0.0f, 0.00001f)); |
||
| 2708 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2709 | XMMATRIX M; |
||
| 2710 | FLOAT fRange = 1.0f / (NearZ-FarZ); |
||
| 2711 | // Note: This is recorded on the stack |
||
| 2712 | XMVECTOR rMem = { |
||
| 2713 | 2.0f / ViewWidth, |
||
| 2714 | 2.0f / ViewHeight, |
||
| 2715 | fRange, |
||
| 2716 | fRange * NearZ |
||
| 2717 | }; |
||
| 2718 | // Copy from memory to SSE register |
||
| 2719 | XMVECTOR vValues = rMem; |
||
| 2720 | XMVECTOR vTemp = _mm_setzero_ps(); |
||
| 2721 | // Copy x only |
||
| 2722 | vTemp = _mm_move_ss(vTemp,vValues); |
||
| 2723 | // 2.0f / ViewWidth,0,0,0 |
||
| 2724 | M.r[0] = vTemp; |
||
| 2725 | // 0,2.0f / ViewHeight,0,0 |
||
| 2726 | vTemp = vValues; |
||
| 2727 | vTemp = _mm_and_ps(vTemp,g_XMMaskY); |
||
| 2728 | M.r[1] = vTemp; |
||
| 2729 | // x=fRange,y=fRange * NearZ,0,1.0f |
||
| 2730 | vTemp = _mm_setzero_ps(); |
||
| 2731 | vValues = _mm_shuffle_ps(vValues,g_XMIdentityR3,_MM_SHUFFLE(3,2,3,2)); |
||
| 2732 | // 0,0,fRange,0.0f |
||
| 2733 | vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(2,0,0,0)); |
||
| 2734 | M.r[2] = vTemp; |
||
| 2735 | // 0,0,fRange * NearZ,1.0f |
||
| 2736 | vTemp = _mm_shuffle_ps(vTemp,vValues,_MM_SHUFFLE(3,1,0,0)); |
||
| 2737 | M.r[3] = vTemp; |
||
| 2738 | return M; |
||
| 2739 | #else // _XM_VMX128_INTRINSICS_ |
||
| 2740 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 2741 | } |
||
| 2742 | |||
| 2743 | //------------------------------------------------------------------------------ |
||
| 2744 | |||
| 2745 | XMFINLINE XMMATRIX XMMatrixOrthographicOffCenterLH |
||
| 2746 | ( |
||
| 2747 | FLOAT ViewLeft, |
||
| 2748 | FLOAT ViewRight, |
||
| 2749 | FLOAT ViewBottom, |
||
| 2750 | FLOAT ViewTop, |
||
| 2751 | FLOAT NearZ, |
||
| 2752 | FLOAT FarZ |
||
| 2753 | ) |
||
| 2754 | { |
||
| 2755 | #if defined(_XM_NO_INTRINSICS_) |
||
| 2756 | |||
| 2757 | FLOAT ReciprocalWidth; |
||
| 2758 | FLOAT ReciprocalHeight; |
||
| 2759 | XMMATRIX M; |
||
| 2760 | |||
| 2761 | XMASSERT(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f)); |
||
| 2762 | XMASSERT(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f)); |
||
| 2763 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2764 | |||
| 2765 | ReciprocalWidth = 1.0f / (ViewRight - ViewLeft); |
||
| 2766 | ReciprocalHeight = 1.0f / (ViewTop - ViewBottom); |
||
| 2767 | |||
| 2768 | M.r[0] = XMVectorSet(ReciprocalWidth + ReciprocalWidth, 0.0f, 0.0f, 0.0f); |
||
| 2769 | M.r[1] = XMVectorSet(0.0f, ReciprocalHeight + ReciprocalHeight, 0.0f, 0.0f); |
||
| 2770 | M.r[2] = XMVectorSet(0.0f, 0.0f, 1.0f / (FarZ - NearZ), 0.0f); |
||
| 2771 | M.r[3] = XMVectorSet(-(ViewLeft + ViewRight) * ReciprocalWidth, |
||
| 2772 | -(ViewTop + ViewBottom) * ReciprocalHeight, |
||
| 2773 | -M.r[2].vector4_f32[2] * NearZ, |
||
| 2774 | 1.0f); |
||
| 2775 | |||
| 2776 | return M; |
||
| 2777 | |||
| 2778 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 2779 | XMMATRIX M; |
||
| 2780 | FLOAT fReciprocalWidth = 1.0f / (ViewRight - ViewLeft); |
||
| 2781 | FLOAT fReciprocalHeight = 1.0f / (ViewTop - ViewBottom); |
||
| 2782 | FLOAT fRange = 1.0f / (FarZ-NearZ); |
||
| 2783 | // Note: This is recorded on the stack |
||
| 2784 | XMVECTOR rMem = { |
||
| 2785 | fReciprocalWidth, |
||
| 2786 | fReciprocalHeight, |
||
| 2787 | fRange, |
||
| 2788 | 1.0f |
||
| 2789 | }; |
||
| 2790 | XMVECTOR rMem2 = { |
||
| 2791 | -(ViewLeft + ViewRight), |
||
| 2792 | -(ViewTop + ViewBottom), |
||
| 2793 | -NearZ, |
||
| 2794 | 1.0f |
||
| 2795 | }; |
||
| 2796 | // Copy from memory to SSE register |
||
| 2797 | XMVECTOR vValues = rMem; |
||
| 2798 | XMVECTOR vTemp = _mm_setzero_ps(); |
||
| 2799 | // Copy x only |
||
| 2800 | vTemp = _mm_move_ss(vTemp,vValues); |
||
| 2801 | // fReciprocalWidth*2,0,0,0 |
||
| 2802 | vTemp = _mm_add_ss(vTemp,vTemp); |
||
| 2803 | M.r[0] = vTemp; |
||
| 2804 | // 0,fReciprocalHeight*2,0,0 |
||
| 2805 | vTemp = vValues; |
||
| 2806 | vTemp = _mm_and_ps(vTemp,g_XMMaskY); |
||
| 2807 | vTemp = _mm_add_ps(vTemp,vTemp); |
||
| 2808 | M.r[1] = vTemp; |
||
| 2809 | // 0,0,fRange,0.0f |
||
| 2810 | vTemp = vValues; |
||
| 2811 | vTemp = _mm_and_ps(vTemp,g_XMMaskZ); |
||
| 2812 | M.r[2] = vTemp; |
||
| 2813 | // -(ViewLeft + ViewRight)*fReciprocalWidth,-(ViewTop + ViewBottom)*fReciprocalHeight,fRange*-NearZ,1.0f |
||
| 2814 | vValues = _mm_mul_ps(vValues,rMem2); |
||
| 2815 | M.r[3] = vValues; |
||
| 2816 | return M; |
||
| 2817 | #else // _XM_VMX128_INTRINSICS_ |
||
| 2818 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 2819 | } |
||
| 2820 | |||
| 2821 | //------------------------------------------------------------------------------ |
||
| 2822 | |||
| 2823 | XMFINLINE XMMATRIX XMMatrixOrthographicOffCenterRH |
||
| 2824 | ( |
||
| 2825 | FLOAT ViewLeft, |
||
| 2826 | FLOAT ViewRight, |
||
| 2827 | FLOAT ViewBottom, |
||
| 2828 | FLOAT ViewTop, |
||
| 2829 | FLOAT NearZ, |
||
| 2830 | FLOAT FarZ |
||
| 2831 | ) |
||
| 2832 | { |
||
| 2833 | #if defined(_XM_NO_INTRINSICS_) |
||
| 2834 | |||
| 2835 | FLOAT ReciprocalWidth; |
||
| 2836 | FLOAT ReciprocalHeight; |
||
| 2837 | XMMATRIX M; |
||
| 2838 | |||
| 2839 | XMASSERT(!XMScalarNearEqual(ViewRight, ViewLeft, 0.00001f)); |
||
| 2840 | XMASSERT(!XMScalarNearEqual(ViewTop, ViewBottom, 0.00001f)); |
||
| 2841 | XMASSERT(!XMScalarNearEqual(FarZ, NearZ, 0.00001f)); |
||
| 2842 | |||
| 2843 | ReciprocalWidth = 1.0f / (ViewRight - ViewLeft); |
||
| 2844 | ReciprocalHeight = 1.0f / (ViewTop - ViewBottom); |
||
| 2845 | |||
| 2846 | M.r[0] = XMVectorSet(ReciprocalWidth + ReciprocalWidth, 0.0f, 0.0f, 0.0f); |
||
| 2847 | M.r[1] = XMVectorSet(0.0f, ReciprocalHeight + ReciprocalHeight, 0.0f, 0.0f); |
||
| 2848 | M.r[2] = XMVectorSet(0.0f, 0.0f, 1.0f / (NearZ - FarZ), 0.0f); |
||
| 2849 | M.r[3] = XMVectorSet(-(ViewLeft + ViewRight) * ReciprocalWidth, |
||
| 2850 | -(ViewTop + ViewBottom) * ReciprocalHeight, |
||
| 2851 | M.r[2].vector4_f32[2] * NearZ, |
||
| 2852 | 1.0f); |
||
| 2853 | |||
| 2854 | return M; |
||
| 2855 | |||
| 2856 | #elif defined(_XM_SSE_INTRINSICS_) |
||
| 2857 | XMMATRIX M; |
||
| 2858 | FLOAT fReciprocalWidth = 1.0f / (ViewRight - ViewLeft); |
||
| 2859 | FLOAT fReciprocalHeight = 1.0f / (ViewTop - ViewBottom); |
||
| 2860 | FLOAT fRange = 1.0f / (NearZ-FarZ); |
||
| 2861 | // Note: This is recorded on the stack |
||
| 2862 | XMVECTOR rMem = { |
||
| 2863 | fReciprocalWidth, |
||
| 2864 | fReciprocalHeight, |
||
| 2865 | fRange, |
||
| 2866 | 1.0f |
||
| 2867 | }; |
||
| 2868 | XMVECTOR rMem2 = { |
||
| 2869 | -(ViewLeft + ViewRight), |
||
| 2870 | -(ViewTop + ViewBottom), |
||
| 2871 | NearZ, |
||
| 2872 | 1.0f |
||
| 2873 | }; |
||
| 2874 | // Copy from memory to SSE register |
||
| 2875 | XMVECTOR vValues = rMem; |
||
| 2876 | XMVECTOR vTemp = _mm_setzero_ps(); |
||
| 2877 | // Copy x only |
||
| 2878 | vTemp = _mm_move_ss(vTemp,vValues); |
||
| 2879 | // fReciprocalWidth*2,0,0,0 |
||
| 2880 | vTemp = _mm_add_ss(vTemp,vTemp); |
||
| 2881 | M.r[0] = vTemp; |
||
| 2882 | // 0,fReciprocalHeight*2,0,0 |
||
| 2883 | vTemp = vValues; |
||
| 2884 | vTemp = _mm_and_ps(vTemp,g_XMMaskY); |
||
| 2885 | vTemp = _mm_add_ps(vTemp,vTemp); |
||
| 2886 | M.r[1] = vTemp; |
||
| 2887 | // 0,0,fRange,0.0f |
||
| 2888 | vTemp = vValues; |
||
| 2889 | vTemp = _mm_and_ps(vTemp,g_XMMaskZ); |
||
| 2890 | M.r[2] = vTemp; |
||
| 2891 | // -(ViewLeft + ViewRight)*fReciprocalWidth,-(ViewTop + ViewBottom)*fReciprocalHeight,fRange*-NearZ,1.0f |
||
| 2892 | vValues = _mm_mul_ps(vValues,rMem2); |
||
| 2893 | M.r[3] = vValues; |
||
| 2894 | return M; |
||
| 2895 | #else // _XM_VMX128_INTRINSICS_ |
||
| 2896 | #endif // _XM_VMX128_INTRINSICS_ |
||
| 2897 | } |
||
| 2898 | |||
| 2899 | #ifdef __cplusplus |
||
| 2900 | |||
| 2901 | /**************************************************************************** |
||
| 2902 | * |
||
| 2903 | * XMMATRIX operators and methods |
||
| 2904 | * |
||
| 2905 | ****************************************************************************/ |
||
| 2906 | |||
| 2907 | //------------------------------------------------------------------------------ |
||
| 2908 | |||
| 2909 | XMFINLINE _XMMATRIX::_XMMATRIX |
||
| 2910 | ( |
||
| 2911 | FXMVECTOR R0, |
||
| 2912 | FXMVECTOR R1, |
||
| 2913 | FXMVECTOR R2, |
||
| 2914 | CXMVECTOR R3 |
||
| 2915 | ) |
||
| 2916 | { |
||
| 2917 | r[0] = R0; |
||
| 2918 | r[1] = R1; |
||
| 2919 | r[2] = R2; |
||
| 2920 | r[3] = R3; |
||
| 2921 | } |
||
| 2922 | |||
| 2923 | //------------------------------------------------------------------------------ |
||
| 2924 | |||
| 2925 | XMFINLINE _XMMATRIX::_XMMATRIX |
||
| 2926 | ( |
||
| 2927 | FLOAT m00, FLOAT m01, FLOAT m02, FLOAT m03, |
||
| 2928 | FLOAT m10, FLOAT m11, FLOAT m12, FLOAT m13, |
||
| 2929 | FLOAT m20, FLOAT m21, FLOAT m22, FLOAT m23, |
||
| 2930 | FLOAT m30, FLOAT m31, FLOAT m32, FLOAT m33 |
||
| 2931 | ) |
||
| 2932 | { |
||
| 2933 | r[0] = XMVectorSet(m00, m01, m02, m03); |
||
| 2934 | r[1] = XMVectorSet(m10, m11, m12, m13); |
||
| 2935 | r[2] = XMVectorSet(m20, m21, m22, m23); |
||
| 2936 | r[3] = XMVectorSet(m30, m31, m32, m33); |
||
| 2937 | } |
||
| 2938 | |||
| 2939 | //------------------------------------------------------------------------------ |
||
| 2940 | |||
| 2941 | XMFINLINE _XMMATRIX::_XMMATRIX |
||
| 2942 | ( |
||
| 2943 | CONST FLOAT* pArray |
||
| 2944 | ) |
||
| 2945 | { |
||
| 2946 | r[0] = XMLoadFloat4((XMFLOAT4*)pArray); |
||
| 2947 | r[1] = XMLoadFloat4((XMFLOAT4*)(pArray + 4)); |
||
| 2948 | r[2] = XMLoadFloat4((XMFLOAT4*)(pArray + 8)); |
||
| 2949 | r[3] = XMLoadFloat4((XMFLOAT4*)(pArray + 12)); |
||
| 2950 | } |
||
| 2951 | |||
| 2952 | //------------------------------------------------------------------------------ |
||
| 2953 | |||
| 2954 | XMFINLINE _XMMATRIX& _XMMATRIX::operator= |
||
| 2955 | ( |
||
| 2956 | CONST _XMMATRIX& M |
||
| 2957 | ) |
||
| 2958 | { |
||
| 2959 | r[0] = M.r[0]; |
||
| 2960 | r[1] = M.r[1]; |
||
| 2961 | r[2] = M.r[2]; |
||
| 2962 | r[3] = M.r[3]; |
||
| 2963 | return *this; |
||
| 2964 | } |
||
| 2965 | |||
| 2966 | //------------------------------------------------------------------------------ |
||
| 2967 | |||
| 2968 | #ifndef XM_NO_OPERATOR_OVERLOADS |
||
| 2969 | |||
| 2970 | #if !defined(_XBOX_VER) && defined(_XM_ISVS2005_) && defined(_XM_X64_) |
||
| 2971 | #pragma warning(push) |
||
| 2972 | #pragma warning(disable : 4328) |
||
| 2973 | #endif |
||
| 2974 | |||
| 2975 | XMFINLINE _XMMATRIX& _XMMATRIX::operator*= |
||
| 2976 | ( |
||
| 2977 | CONST _XMMATRIX& M |
||
| 2978 | ) |
||
| 2979 | { |
||
| 2980 | *this = XMMatrixMultiply(*this, M); |
||
| 2981 | return *this; |
||
| 2982 | } |
||
| 2983 | |||
| 2984 | //------------------------------------------------------------------------------ |
||
| 2985 | |||
| 2986 | XMFINLINE _XMMATRIX _XMMATRIX::operator* |
||
| 2987 | ( |
||
| 2988 | CONST _XMMATRIX& M |
||
| 2989 | ) CONST |
||
| 2990 | { |
||
| 2991 | return XMMatrixMultiply(*this, M); |
||
| 2992 | } |
||
| 2993 | |||
| 2994 | #if !defined(_XBOX_VER) && defined(_XM_ISVS2005_) && defined(_XM_X64_) |
||
| 2995 | #pragma warning(pop) |
||
| 2996 | #endif |
||
| 2997 | |||
| 2998 | #endif // !XM_NO_OPERATOR_OVERLOADS |
||
| 2999 | |||
| 3000 | /**************************************************************************** |
||
| 3001 | * |
||
| 3002 | * XMFLOAT3X3 operators |
||
| 3003 | * |
||
| 3004 | ****************************************************************************/ |
||
| 3005 | |||
| 3006 | //------------------------------------------------------------------------------ |
||
| 3007 | |||
| 3008 | XMFINLINE _XMFLOAT3X3::_XMFLOAT3X3 |
||
| 3009 | ( |
||
| 3010 | FLOAT m00, FLOAT m01, FLOAT m02, |
||
| 3011 | FLOAT m10, FLOAT m11, FLOAT m12, |
||
| 3012 | FLOAT m20, FLOAT m21, FLOAT m22 |
||
| 3013 | ) |
||
| 3014 | { |
||
| 3015 | m[0][0] = m00; |
||
| 3016 | m[0][1] = m01; |
||
| 3017 | m[0][2] = m02; |
||
| 3018 | |||
| 3019 | m[1][0] = m10; |
||
| 3020 | m[1][1] = m11; |
||
| 3021 | m[1][2] = m12; |
||
| 3022 | |||
| 3023 | m[2][0] = m20; |
||
| 3024 | m[2][1] = m21; |
||
| 3025 | m[2][2] = m22; |
||
| 3026 | } |
||
| 3027 | |||
| 3028 | //------------------------------------------------------------------------------ |
||
| 3029 | |||
| 3030 | XMFINLINE _XMFLOAT3X3::_XMFLOAT3X3 |
||
| 3031 | ( |
||
| 3032 | CONST FLOAT* pArray |
||
| 3033 | ) |
||
| 3034 | { |
||
| 3035 | UINT Row; |
||
| 3036 | UINT Column; |
||
| 3037 | |||
| 3038 | for (Row = 0; Row < 3; Row++) |
||
| 3039 | { |
||
| 3040 | for (Column = 0; Column < 3; Column++) |
||
| 3041 | { |
||
| 3042 | m[Row][Column] = pArray[Row * 3 + Column]; |
||
| 3043 | } |
||
| 3044 | } |
||
| 3045 | } |
||
| 3046 | |||
| 3047 | //------------------------------------------------------------------------------ |
||
| 3048 | |||
| 3049 | XMFINLINE _XMFLOAT3X3& _XMFLOAT3X3::operator= |
||
| 3050 | ( |
||
| 3051 | CONST _XMFLOAT3X3& Float3x3 |
||
| 3052 | ) |
||
| 3053 | { |
||
| 3054 | _11 = Float3x3._11; |
||
| 3055 | _12 = Float3x3._12; |
||
| 3056 | _13 = Float3x3._13; |
||
| 3057 | _21 = Float3x3._21; |
||
| 3058 | _22 = Float3x3._22; |
||
| 3059 | _23 = Float3x3._23; |
||
| 3060 | _31 = Float3x3._31; |
||
| 3061 | _32 = Float3x3._32; |
||
| 3062 | _33 = Float3x3._33; |
||
| 3063 | |||
| 3064 | return *this; |
||
| 3065 | } |
||
| 3066 | |||
| 3067 | /**************************************************************************** |
||
| 3068 | * |
||
| 3069 | * XMFLOAT4X3 operators |
||
| 3070 | * |
||
| 3071 | ****************************************************************************/ |
||
| 3072 | |||
| 3073 | //------------------------------------------------------------------------------ |
||
| 3074 | |||
| 3075 | XMFINLINE _XMFLOAT4X3::_XMFLOAT4X3 |
||
| 3076 | ( |
||
| 3077 | FLOAT m00, FLOAT m01, FLOAT m02, |
||
| 3078 | FLOAT m10, FLOAT m11, FLOAT m12, |
||
| 3079 | FLOAT m20, FLOAT m21, FLOAT m22, |
||
| 3080 | FLOAT m30, FLOAT m31, FLOAT m32 |
||
| 3081 | ) |
||
| 3082 | { |
||
| 3083 | m[0][0] = m00; |
||
| 3084 | m[0][1] = m01; |
||
| 3085 | m[0][2] = m02; |
||
| 3086 | |||
| 3087 | m[1][0] = m10; |
||
| 3088 | m[1][1] = m11; |
||
| 3089 | m[1][2] = m12; |
||
| 3090 | |||
| 3091 | m[2][0] = m20; |
||
| 3092 | m[2][1] = m21; |
||
| 3093 | m[2][2] = m22; |
||
| 3094 | |||
| 3095 | m[3][0] = m30; |
||
| 3096 | m[3][1] = m31; |
||
| 3097 | m[3][2] = m32; |
||
| 3098 | } |
||
| 3099 | |||
| 3100 | //------------------------------------------------------------------------------ |
||
| 3101 | |||
| 3102 | XMFINLINE _XMFLOAT4X3::_XMFLOAT4X3 |
||
| 3103 | ( |
||
| 3104 | CONST FLOAT* pArray |
||
| 3105 | ) |
||
| 3106 | { |
||
| 3107 | UINT Row; |
||
| 3108 | UINT Column; |
||
| 3109 | |||
| 3110 | for (Row = 0; Row < 4; Row++) |
||
| 3111 | { |
||
| 3112 | for (Column = 0; Column < 3; Column++) |
||
| 3113 | { |
||
| 3114 | m[Row][Column] = pArray[Row * 3 + Column]; |
||
| 3115 | } |
||
| 3116 | } |
||
| 3117 | } |
||
| 3118 | |||
| 3119 | //------------------------------------------------------------------------------ |
||
| 3120 | |||
| 3121 | XMFINLINE _XMFLOAT4X3& _XMFLOAT4X3::operator= |
||
| 3122 | ( |
||
| 3123 | CONST _XMFLOAT4X3& Float4x3 |
||
| 3124 | ) |
||
| 3125 | { |
||
| 3126 | XMVECTOR V1 = XMLoadFloat4((XMFLOAT4*)&Float4x3._11); |
||
| 3127 | XMVECTOR V2 = XMLoadFloat4((XMFLOAT4*)&Float4x3._22); |
||
| 3128 | XMVECTOR V3 = XMLoadFloat4((XMFLOAT4*)&Float4x3._33); |
||
| 3129 | |||
| 3130 | XMStoreFloat4((XMFLOAT4*)&_11, V1); |
||
| 3131 | XMStoreFloat4((XMFLOAT4*)&_22, V2); |
||
| 3132 | XMStoreFloat4((XMFLOAT4*)&_33, V3); |
||
| 3133 | |||
| 3134 | return *this; |
||
| 3135 | } |
||
| 3136 | |||
| 3137 | /**************************************************************************** |
||
| 3138 | * |
||
| 3139 | * XMFLOAT4X4 operators |
||
| 3140 | * |
||
| 3141 | ****************************************************************************/ |
||
| 3142 | |||
| 3143 | //------------------------------------------------------------------------------ |
||
| 3144 | |||
| 3145 | XMFINLINE _XMFLOAT4X4::_XMFLOAT4X4 |
||
| 3146 | ( |
||
| 3147 | FLOAT m00, FLOAT m01, FLOAT m02, FLOAT m03, |
||
| 3148 | FLOAT m10, FLOAT m11, FLOAT m12, FLOAT m13, |
||
| 3149 | FLOAT m20, FLOAT m21, FLOAT m22, FLOAT m23, |
||
| 3150 | FLOAT m30, FLOAT m31, FLOAT m32, FLOAT m33 |
||
| 3151 | ) |
||
| 3152 | { |
||
| 3153 | m[0][0] = m00; |
||
| 3154 | m[0][1] = m01; |
||
| 3155 | m[0][2] = m02; |
||
| 3156 | m[0][3] = m03; |
||
| 3157 | |||
| 3158 | m[1][0] = m10; |
||
| 3159 | m[1][1] = m11; |
||
| 3160 | m[1][2] = m12; |
||
| 3161 | m[1][3] = m13; |
||
| 3162 | |||
| 3163 | m[2][0] = m20; |
||
| 3164 | m[2][1] = m21; |
||
| 3165 | m[2][2] = m22; |
||
| 3166 | m[2][3] = m23; |
||
| 3167 | |||
| 3168 | m[3][0] = m30; |
||
| 3169 | m[3][1] = m31; |
||
| 3170 | m[3][2] = m32; |
||
| 3171 | m[3][3] = m33; |
||
| 3172 | } |
||
| 3173 | |||
| 3174 | //------------------------------------------------------------------------------ |
||
| 3175 | |||
| 3176 | XMFINLINE _XMFLOAT4X4::_XMFLOAT4X4 |
||
| 3177 | ( |
||
| 3178 | CONST FLOAT* pArray |
||
| 3179 | ) |
||
| 3180 | { |
||
| 3181 | UINT Row; |
||
| 3182 | UINT Column; |
||
| 3183 | |||
| 3184 | for (Row = 0; Row < 4; Row++) |
||
| 3185 | { |
||
| 3186 | for (Column = 0; Column < 4; Column++) |
||
| 3187 | { |
||
| 3188 | m[Row][Column] = pArray[Row * 4 + Column]; |
||
| 3189 | } |
||
| 3190 | } |
||
| 3191 | } |
||
| 3192 | |||
| 3193 | //------------------------------------------------------------------------------ |
||
| 3194 | |||
| 3195 | XMFINLINE _XMFLOAT4X4& _XMFLOAT4X4::operator= |
||
| 3196 | ( |
||
| 3197 | CONST _XMFLOAT4X4& Float4x4 |
||
| 3198 | ) |
||
| 3199 | { |
||
| 3200 | XMVECTOR V1 = XMLoadFloat4((XMFLOAT4*)&Float4x4._11); |
||
| 3201 | XMVECTOR V2 = XMLoadFloat4((XMFLOAT4*)&Float4x4._21); |
||
| 3202 | XMVECTOR V3 = XMLoadFloat4((XMFLOAT4*)&Float4x4._31); |
||
| 3203 | XMVECTOR V4 = XMLoadFloat4((XMFLOAT4*)&Float4x4._41); |
||
| 3204 | |||
| 3205 | XMStoreFloat4((XMFLOAT4*)&_11, V1); |
||
| 3206 | XMStoreFloat4((XMFLOAT4*)&_21, V2); |
||
| 3207 | XMStoreFloat4((XMFLOAT4*)&_31, V3); |
||
| 3208 | XMStoreFloat4((XMFLOAT4*)&_41, V4); |
||
| 3209 | |||
| 3210 | return *this; |
||
| 3211 | } |
||
| 3212 | |||
| 3213 | #endif // __cplusplus |
||
| 3214 | |||
| 3215 | #endif // __XNAMATHMATRIX_INL__ |
||
| 3216 |